Advertisement

Computational Geosciences

, Volume 22, Issue 4, pp 1135–1148 | Cite as

Modeling the Neuman’s well function by an artificial neural network for the determination of unconfined aquifer parameters

  • Tahereh Azari
  • Nozar Samani
Original Paper
  • 29 Downloads

Abstract

An artificial neural network is designed as an improved alternative approach to the conventional type-curve matching technique for the determination of unconfined aquifer parameters. The network is implemented in a six-step protocol consisted of input selection, data splitting, design of network architecture, determination of network structure, network training, and network validation. The network is trained for the well function of unconfined aquifers by the back-propagation technique, adopting the Levenberg-Marquardt optimization algorithm. By applying a principal component analysis (PCA) on the training input data and through a trial-and-error procedure, the structure of the network is optimized with the topology of (3 × 6 × 3). The replicative, predictive, and structural validity of the developed network are evaluated with synthetic and real field data. The network eliminates graphical error inherent in the type-curve matching technique and provides an automatic and fast procedure for aquifer parameter estimation, particularly when analyzing many alternative pumping tests routinely obtained from continuous data loggers/data collection systems.

Keywords

Aquifer parameters Well function Multi-layer perceptron Principal component analysis (PCA) Pumping test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Constructive comments and suggestions provided by the associate Editor Prof. Ibrahim Hoteit and two anonymous reviewers are greatly appreciated.

Funding Information

This research was supported by the Office of Research Vice Chancellor of Shiraz University, Iran, grant number 11/480.

References

  1. 1.
    Abrahart, R.J., Anctil, F., Coulibaly, P., Dawson, C.W., Mount, N.J., See, L.M., Shamseldin, A.Y., Solomatine, D.P., Toth, E., Wilby, R.L.: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog. Phys. Geogr. 36(4), 480–513 (2012)CrossRefGoogle Scholar
  2. 2.
    Almasari, M.N., Kalurachi, J.J.: Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ. Model. Softw. 20, 851–871 (2005)CrossRefGoogle Scholar
  3. 3.
    ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 5(2), 115–123 (2000)CrossRefGoogle Scholar
  4. 4.
    ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng. 5(2), 124–137 (2000)CrossRefGoogle Scholar
  5. 5.
    Banerjee, P., Singh, V.S., Chatttopadhyay, K., Chandra, P.C., Singh, B.: Artificial neural network model as a potential alternative for groundwater salinity forecasting. J. Hydrol. 398, 212–220 (2011)CrossRefGoogle Scholar
  6. 6.
    Bennett, N.D., Croke, B.F.W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., Andreassian, V.: Characterising performance of environmental models. Environ. Model. Softw. 40(0), 1–20 (2013)CrossRefGoogle Scholar
  7. 7.
    Boulton, N.S.: Unsteady radial flow to a pumped well allowing for delayed yield from storage. Int. Assn. Sci. Hydrol. 37, 472–477 (1954)Google Scholar
  8. 8.
    Cattell, R.B.: The Scree test for the number of factors. Multivar. Behav. Res. 1, 245–276 (1966)CrossRefGoogle Scholar
  9. 9.
    Chang, F.J., Kao, L.S., Kuo, Y.M., Liu, C.W.: Artificial neural networks for estimating regional arsenic concentrations in a black foot disease area in Taiwan. J. Hydrol. 388, 65–76 (2010)CrossRefGoogle Scholar
  10. 10.
    Chang, L.C., Chu, H.J., Hsiao, C.T.: Integration of optimal dynamic control and neural network for groundwater quality management. Water Resour. Manag. 26, 1253–1269 (2012)CrossRefGoogle Scholar
  11. 11.
    Chau, K.W.: An ontology-based knowledge management system for flow and water quality modeling. Adv. Eng. Softw. 38(3), 172–181 (2007)CrossRefGoogle Scholar
  12. 12.
    Cheng, C., Chau, K., Sun, Y., Lin, J.: Long-term prediction of discharges in Manwan reservoir using artificial neural network models. Lect. Notes Comput. Sci. (LNCS) 3498, 1040–1045 (2005)CrossRefGoogle Scholar
  13. 13.
    Coppola, E., Szidarovszky, F., Poulton, M., Charles, E.: Artificial neural networks approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping and climate conditions. J. Hydrol. Eng. 8(6), 348–360 (2003)CrossRefGoogle Scholar
  14. 14.
    Coulibaly, P., Anctil, F., Aravena, R., Bobee, B.: Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 37(4), 885–896 (2001)CrossRefGoogle Scholar
  15. 15.
    Dadaser, F., Cengiz, E.: A neural network model for simulation of water levels at the Sultan Marshes wetland in Turkey. Wetl. Ecol. Manag. 21(5), 297–306 (2013)CrossRefGoogle Scholar
  16. 16.
    Daliakopoulos, I.N., Coulibaly, P., Tsanis, I.K.: Groundwater level forecasting using artificial neural networks. J. Hydrol. 309(1–4), 229–240 (2005)CrossRefGoogle Scholar
  17. 17.
    Davis, J.C.: Statistics and Data Analysis in Geology, 3rd edn. Wiley, New York (2002)Google Scholar
  18. 18.
    De Ridder, N.A.: Analysis of the pumping test De Vennebulten near Varsseveld (in Dutch). Institute for Land and Water Management Research, Wageningen, Report no. 335, 5 (1966)Google Scholar
  19. 19.
    Fausett, L.: Fundamentals of Neural Networks. Prentice Hall, Englewood Cliffs (1994)Google Scholar
  20. 20.
    Gangopadhay, S., Gautam, T.R., Gupta, A.D.: Subsurface characterization using neural networks and GIS. J. Comput. Civ. Eng. 13(3), 153–161 (1999)CrossRefGoogle Scholar
  21. 21.
    Gass, S.I.: Decision-aiding models: Validation, assessment, and related issues for policy analysis. Oper. Res. 31(4), 603–631 (1983)CrossRefGoogle Scholar
  22. 22.
    Hamm, L., Brorsen, B.W., Hagan, M.: Comparison of stochastic global optimization methods to estimate neural network weights. Neural. Process. Lett. 26(3), 145–158 (2007)CrossRefGoogle Scholar
  23. 23.
    Hantush, M.S., Jacob, C.E.: Non-steady radial flow in an infinite leaky aquifer. Trans. Amer. Geophys. Union 36(1), 95–100 (1955)CrossRefGoogle Scholar
  24. 24.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  25. 25.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feed forward networks are universal approximators. Neur. Netw. 2(5), 359–366 (1989)CrossRefGoogle Scholar
  26. 26.
    Karamouz, M., Razavi, S., Araghinejad, S.: Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study. Hydrol. Process. 22(2), 229–241 (2008)CrossRefGoogle Scholar
  27. 27.
    Karlik, B., Olgac, A.V.: Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 1(4), 111–122 (2011)Google Scholar
  28. 28.
    Lallahem, S., Mania, J., Hani, A., Najjar, Y.: On the use of neural networks to evaluate groundwater levels in fractured media. J. Hydrol. 307, 92–111 (2005)CrossRefGoogle Scholar
  29. 29.
    Lin, G.F., Chen, G.R.: Determination of aquifer parameters using radial basis function network approach. J. Chin. Inst. Eng. 28(2), 241–249 (2005)CrossRefGoogle Scholar
  30. 30.
    Lin, G.F., Chen, G.R.: An improved neural network approach to the determination of aquifer parameters. J. Hydrol. 316(1–4), 281–289 (2006)CrossRefGoogle Scholar
  31. 31.
    Lin, H.T., Ke, K.Y., Chen, C.H., Wu, S.C., Tan, Y.C.: Estimating anisotropic aquifer parameters by artificial neural networks. Hydrol. Process. 24, 3237–3250 (2010)CrossRefGoogle Scholar
  32. 32.
    Mahallawi, K.h., Mania, J., Hani, A., Shahrour, I.: Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas. Environ. Earth Sci. 65, 917–928 (2012)CrossRefGoogle Scholar
  33. 33.
    Maier, H.R., Dandy, G.C.: Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting. Water Resour. Res. 32(8), 2591–2596 (1999)CrossRefGoogle Scholar
  34. 34.
    Maier, H.R., Dandy, G.C.: Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Softw. 15, 101–124 (2000)CrossRefGoogle Scholar
  35. 35.
    Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P.: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 25(8), 891–909 (2010)CrossRefGoogle Scholar
  36. 36.
    McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 113–115 (1943)CrossRefGoogle Scholar
  37. 37.
    Mishra, A., Ray, C., Kolpin, D.: Use of qualitative and quantitative information in neural networks for assessing agricultural chemical contamination of domestic wells. J. Hydrol. Eng. 9(6), 502–511 (2004)CrossRefGoogle Scholar
  38. 38.
    Mohanty, S., Jha, M.K., Kumar, A., Sudheer, K.P.: Artificial neural network modeling for groundwater level forecasting in a river island of eastern india. Water Resour. Manag. 24(9), 1845–1865 (2010)CrossRefGoogle Scholar
  39. 39.
    Nayak, P.C., Satyaji Rao, Y.R., Sudheer, K.P.: Groundwater level forecasting in a shallow aquifer using artificial neural network. Water Resour. Manag. 20(1), 77–90 (2006)CrossRefGoogle Scholar
  40. 40.
    Neuman, S.P.: Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resour. Res. 11(2), 329–342 (1975)CrossRefGoogle Scholar
  41. 41.
    Parkin, G., Birkinshaw, S.J., Younger, P.L., Rao, Z., Kirk, S.: A numerical modeling and neural network approach to estimate the impact of groundwater abstractions on river flows. J. Hydrol. 339, 15–28 (2007)CrossRefGoogle Scholar
  42. 42.
    Pezeshk, S., Camp, C.V., Karprapu, S.: Geophysical log interpretation using neural network. J. Comput. Civ. Eng. 10(2), 136–143 (1996)CrossRefGoogle Scholar
  43. 43.
    Prickett, T.A.: Type curve solution to aquifer tests under water table conditions. Ground Water 3, 3 (1965)CrossRefGoogle Scholar
  44. 44.
    Ranjithan, S., Eheart, J.W., Garrett, J.H.: Neural network-based screening for groundwater reclamation under uncertainty. Water Resour. Res. 29(3), 563–574 (1993)CrossRefGoogle Scholar
  45. 45.
    Ray, C., Klindworth, K.K.: Neural networks for agrichemical vulnerability assessment of rural private wells. J. Hydrol. Eng. 5(2), 162–171 (2000)CrossRefGoogle Scholar
  46. 46.
    Razavi, S., Tolson, B.A.: A new formulation for feed forward neural networks. Neural Netw. 22(10), 1588–1598 (2011)CrossRefGoogle Scholar
  47. 47.
    Rumelhart, D.E., Hinton, G.R., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D. E., David, E (eds.) Parallel Distributed Processing, pp 318–362. MIT Press, MA (1986)Google Scholar
  48. 48.
    Sahoo, G.B., Ray, C., Mehnert, E., Keefer, D.A.: Applications of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci. Total. Environ. 367, 234–251 (2006)CrossRefGoogle Scholar
  49. 49.
    Samani, N.: On the development and calibration of a parametric catchment sediment model. J. Eng.(IRI) 2 (3), 47–54 (1990)Google Scholar
  50. 50.
    Samani, N., Gohari-Moghadam, M., Safavi, A.A.: A simple neural network model for the determination of aquifer parameters. J. Hydrol. 340(1–2), 1–11 (2007)CrossRefGoogle Scholar
  51. 51.
    Singh, R.M., Datta, B.: Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data. Water Resour. Manag. 21, 557–572 (2007)CrossRefGoogle Scholar
  52. 52.
    Taormina, R., Chau, K.W., Sethi, R.: Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 25(8), 1670–1676 (2012)CrossRefGoogle Scholar
  53. 53.
    Tapoglou, E., Trichakis, I.C., Dokou, Z., Nikolos, I.K., Karatzas, G.P.: Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrol. Sci. J. 59(6), 1225–1239 (2014).  https://doi.org/10.1080/02626667.2013.838005 CrossRefGoogle Scholar
  54. 54.
    Theis, C.V.: The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans. Amer. Geophys. Union 16, 519–524 (1935)CrossRefGoogle Scholar
  55. 55.
    Todd, D.K., Mays, L.W.: Groundwater Hydrology. Wiley, New York (2005)Google Scholar
  56. 56.
    Toth, E., Brath, A., Montanari, A.: Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol. 239, 132–147 (2000)CrossRefGoogle Scholar
  57. 57.
    Wu, C.L., Chau, K.W., Li, Y.S.: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 45, W08432 (2009)CrossRefGoogle Scholar
  58. 58.
    Wu, W., Dandy, G.C., Maier, H.R.: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modeling. Environ. Model. Softw. 54, 108–127 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth Sciences, College of SciencesShiraz UniversityShirazIran

Personalised recommendations