Advertisement

Computational Geosciences

, Volume 22, Issue 4, pp 951–974 | Cite as

Stabilized equal low-order finite elements in ice sheet modeling – accuracy and robustness

  • Christian Helanow
  • Josefin Ahlkrona
Open Access
Original Paper

Abstract

We investigate the accuracy and robustness of one of the most common methods used in glaciology for finite element discretization of the 𝔭-Stokes equations: linear equal order finite elements with Galerkin least-squares (GLS) stabilization on anisotropic meshes. Furthermore, we compare the results to other stabilized methods. We find that the vertical velocity component is more sensitive to the choice of GLS stabilization parameter than horizontal velocity. Additionally, the accuracy of the vertical velocity component is especially important since errors in this component can cause ice surface instabilities and propagate into future ice volume predictions. If the element cell size is set to the minimum edge length and the stabilization parameter is allowed to vary non-linearly with viscosity, the GLS stabilization parameter found in literature is a good choice on simple domains. However, near ice margins the standard parameter choice may result in significant oscillations in the vertical component of the surface velocity. For these reasons, other stabilization techniques, in particular the interior penalty method, result in better accuracy and are less sensitive to the choice of stabilization parameter. During this work, we also discovered that the manufactured solutions often used to evaluate errors in glaciology are not reliable due to high artificial surface forces at singularities. We perform our numerical experiments in both FEniCS and Elmer/Ice.

Keywords

Finite element method Galerkin least-squares p-Stokes Ice-sheet modeling Anisotropic mesh 

Mathematics Subject Classification 2010

76M10 86A40 76A05 76A20 

Notes

Acknowledgments

Christian Helanow was supported by the nuclear waste management organizations in Sweden (Svensk Kärnbränslehantering AB) and Finland (Posiva Oy) through the Greenland Analogue Project and by Gålöstiftelsen. Josefin Ahlkrona was supported by the Swedish strategic research programme eSSENCE (Uppsala) and the cluster of Excellence 80 “The Future Ocean” (Kiel). The “Future Ocean” is funded within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. The computations with Elmer/Ice were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC Centre for High Performance Computing (PDC-HPC) and at Uppmax at Uppsala University. Both facilities provided excellent support. We wish to thank two anonymous reviewers for their constructive criticism, and Per Lötstedt and Peter Jansson for valuable comments on the manuscript.

References

  1. 1.
    Ahlkrona, J., Kirchner, N., Lötstedt, P.: Accuracy of the zeroth and second order shallow ice approximation - numerical and theoretical results. Geosci. Model Dev. 6, 2135–2152 (2013)CrossRefGoogle Scholar
  2. 2.
    Ainsworth, M., Coggins, P.: The stability of mixed hp-finite element methods for stokes flow on high aspect ratio elements. SIAM J. Numer. Anal. 38(5), 1721–1761 (2000)CrossRefGoogle Scholar
  3. 3.
    Alley, R.B., MacAyeal, D.R.: Ice-rafted debris associated with binge/purge oscillations of the Laurentide ice sheet. Paleoceanography 9(4), 503–511 (1994)CrossRefGoogle Scholar
  4. 4.
    Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The FEniCS Project Version 1.5 Archive of Numerical Software 3(100) (2015)Google Scholar
  5. 5.
    Alnæs, M.S., Logg, A., Olgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. 40(2), 9:1–9:37 (2014)CrossRefGoogle Scholar
  6. 6.
    Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. CALCOLO 21 (4), 337–344 (1984)CrossRefGoogle Scholar
  7. 7.
    Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20(3), 179–192 (1973)CrossRefGoogle Scholar
  8. 8.
    Baiocchi, C., Brezzi, F., Franca, L.P.: Virtual bubbles and Galerkin-least-squares type methods (ga.l.s.) Comput. Methods Appl. Mech. Eng. 105(1), 125–141 (1993)CrossRefGoogle Scholar
  9. 9.
    Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSC Web page http://www.mcs.anl.gov/petsc (2016)
  10. 10.
    Bamber, J.: Greenland 5 km DEM, ice thickness, and bedrock elevation grids https://nsidc.org/data/docs/daac/nsidc0092_greenland_ice_thickness.gd.html (2001)
  11. 11.
    Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. CALCOLO 38(4), 173–199 (2001)CrossRefGoogle Scholar
  12. 12.
    Belenki, L., Berselli, L.C., Diening, L., Ru ̈žička, M.: On the finite element approximation of p-stokes systems. SIAM J. Numer. Anal. 50(2), 373–397 (2012)CrossRefGoogle Scholar
  13. 13.
    Bindschadler, R.A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W.H., Martin, M.A., Morlighem, M., Parizek, B.R., Pollard, D., Price, S.F., Ren, D., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., Wang, W.L.: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the seaRISE project). J. Glaciol. 59, 195–224 (2013). http://tinyurl.com/srise-umt CrossRefGoogle Scholar
  14. 14.
    Blasco, J.: An anisotropic GLS-stabilized finite element method for incompressible flow problems. Comput. Methods Appl. Mech. Eng. 197(45-48), 3712–3723 (2008)CrossRefGoogle Scholar
  15. 15.
    Blatter, H.: Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41, 333–344 (1995)CrossRefGoogle Scholar
  16. 16.
    Bochev, P.B., Dohrmann, C.R., Gunzburger, M.: Stabilization of mixed finite elements for the stokes equations. SIAM J. Numerical Analysis 44, 82–101 (2006)CrossRefGoogle Scholar
  17. 17.
    Braack, M.: A stabilized finite element scheme for the navier-stokes equations on quadrilateral anisotropic meshes. ESAIM: Mathematical Modelling and Numerical Analysis 42(6), 903–924 (2008)CrossRefGoogle Scholar
  18. 18.
    Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized oseen problem. Comput. Methods Appl. Mech. Engrg. 196, 853–866 (2007)CrossRefGoogle Scholar
  19. 19.
    Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27(2/3), 116–147 (2009)Google Scholar
  20. 20.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis - Modé,lisation Mathématique et Analyse Numérique 8(R2), 129–151 (1974)Google Scholar
  21. 21.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefGoogle Scholar
  22. 22.
    Brinkerhoff, D.J., Johnson, J.V.: Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model varGlaS. Cryosphere 7, 1161–1184 (2013)CrossRefGoogle Scholar
  23. 23.
    Burman, E., Hansbo, P.: Edge stabilization for the generalized stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Eng. 195(19-22), 2393–2410 (2006)CrossRefGoogle Scholar
  24. 24.
    Calov, R., Marsiat, I.: Simulations of the Northern hemisphere through the last glacial-interglacial cycle with a vertically integrated and a three-dimensional thermomechanical ice-sheet model coupled to a climate model. Ann. Glaciol. 27, 169–176 (1998)CrossRefGoogle Scholar
  25. 25.
    Chen, Q., Gunzburger, M., Perego, M.: Well-posedness results for a nonlinear stokes problem arising in glaciology. SIAM J. Math. Anal. 45(5), 2710–2733 (2013)CrossRefGoogle Scholar
  26. 26.
    Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., Unnikrishnan, A.: Sea level change. In: Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. (eds.) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Book Section 13, pp 1137–1216. Cambridge University Press, Cambridge (2013)Google Scholar
  27. 27.
    Codina, R., Blasco, J.: A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput. Methods Appl. Mech. Eng. 143(3), 373–391 (1997)CrossRefGoogle Scholar
  28. 28.
    Davis, T.A.: SuiteSparse Web page http://faculty.cse.tamu.edu/davis/suitesparse.html (2016)
  29. 29.
    Droux, J.J., Hughes, T.J.: A boundary integral modification of the Galerkin least squares formulation for the Stokes problem. Comput. Methods Appl. Mech. Eng. 113(1), 173–182 (1994)CrossRefGoogle Scholar
  30. 30.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004)CrossRefGoogle Scholar
  31. 31.
    Franca, L., Frey, S.: Stabilized finite element methods: II. The incompressible navier-stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)CrossRefGoogle Scholar
  32. 32.
    Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., Thies, J.: Capabilities and performance of Elmer/Ice, a new generation ice-sheet model. Geosci. Model Dev. 6, 1299–1318 (2013)CrossRefGoogle Scholar
  33. 33.
    Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., Vaughan, D.G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere 6, 1561–1576 (2012)CrossRefGoogle Scholar
  34. 34.
    Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Performance and scalability of hierarchical hybrid multigrid solvers for stokes systems. SIAM J. Sci. Comput. 37(2), C143–C168 (2015)CrossRefGoogle Scholar
  35. 35.
    Greve, R.: Thermomechanisches Verhalten Polythermer Eisschilde - Theorie, Analytik, Numerik. Ph.D. Thesis Department of Mechanics, vol. III. Technical University Darmstadt, Germany (1995)Google Scholar
  36. 36.
    Greve, R.: A continuum-mechanical formulation for shallow polythermal ice sheets. Phil. Trans. R. Soc. Lond. A 355, 921–974 (1997)CrossRefGoogle Scholar
  37. 37.
    Heinrich, H.: Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quatern. Res. 29(2), 142–152 (1988)CrossRefGoogle Scholar
  38. 38.
    Hirn, A.: Finite Element Approximation of Problems in Non-Newtonian Fluid Mechanics. Ph.D. thesis, Mathematical Institute of Charles University (2011)Google Scholar
  39. 39.
    Hirn, A.: Approximation of the p-stokes equations with equal-order finite elements. J. Math. Fluid Mech. 15 (1), 65–88 (2012)CrossRefGoogle Scholar
  40. 40.
    Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi Condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)CrossRefGoogle Scholar
  41. 41.
    Huybrechts, P.: A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dynam. 5(2), 79–92 (1990)CrossRefGoogle Scholar
  42. 42.
    John, V., Knobloch, P., Novo, J.: Finite elements for scalar convection-dominated equations and incompressible flow problems – A never ending story? Weierstrass Institute for Applied Analysis and Stochastics: Preprint 2410. http://www.wias-berlin.de/preprint/2410/wias_preprints_2410.pdf. Preprint (2017)
  43. 43.
    Jouvet, G., Rappaz, J.: Analysis and finite element approximation of a nonlinear stationary stokes problem arising in glaciology advances in numerical analysis (2011)Google Scholar
  44. 44.
    Larour, E., Seroussi, H., Morlighem, M., Rignot, E.: Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. 117, F01,022 (2012)Google Scholar
  45. 45.
    Leng, W., Ju, L., Gunzburger, M., Price, S.: Manufactured solutions and the verification of three-dimensional stokes ice-sheet models. Cryosphere 7, 19–29 (2013)CrossRefGoogle Scholar
  46. 46.
    Leng, W., Ju, L., Xie, Y., Cui, T., Gunzburger, M.: Finite element three-dimensional stokes ice sheet dynamics model with enhanced local mass conservation. J. Comput. Phys. 274, 299–311 (2014)CrossRefGoogle Scholar
  47. 47.
    Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method, Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Berlin (2012)CrossRefGoogle Scholar
  48. 48.
    Micheletti, S., Perotto, S., Picasso, M.: Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and the stokes problems. SIAM J. Numer. Anal. 41(3), 1131–1162 (2003)CrossRefGoogle Scholar
  49. 49.
    Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res. 108, 2382 (2003)CrossRefGoogle Scholar
  50. 50.
    Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt, B., Gagliardini, O., Gudmundsson, G.H., Hindmarsh, R., Hubbard, A., Johnson, J.V., Kleiner, T., Konovalov, Y., Martin, C., Payne, A.J., Pollard, D., Price, S., Rückamp, M., Saito, F., Souc̆ek, O., Sugiyama, S., Zwinger, T.: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM). Cryosphere 2, 95–108 (2008)CrossRefGoogle Scholar
  51. 51.
    Petra, N., Zhu, H., Stadler, G., Hughes, T.J.R., Ghattas, O.: An inexact gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model. J. Glaciol. 58, 889–903 (2012)CrossRefGoogle Scholar
  52. 52.
    Råback, P., Malinen, M., Ruokalainen, J., Pursula, A., Zwinger, T.: Elmer Models Manual. CSC – IT Center for Science, Helsinki (2013)Google Scholar
  53. 53.
    Sargent, A., Fastook, J.L.: Manufactured analytical solutions for isothermal full-stokes ice sheet models. Cryosphere 4(3), 285–311 (2010)CrossRefGoogle Scholar
  54. 54.
    Seddik, H., Greve, R., Zwinger, T., Gillet-Chaulet, F., Gagliardini, O.: Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model elmer/Ice. J. Glaciol. 58, 427–440 (2012)CrossRefGoogle Scholar
  55. 55.
    Shewchuk, J.R.: What is a good linear finite element? - interpolation, conditioning, anisotropy, and quality measures. Tech. rep.. In: Proceedings of the 11th international meshing roundtable (2002)Google Scholar
  56. 56.
    Taylor, C., Hood, P.: Navier-stokes equations using mixed interpolation. In: International symposium on finite element methods in flow problems, pp 121–132 (1974)Google Scholar
  57. 57.
    Apel, T., Knopp, T., Lube, G.: Stabilized finite element methods with anisotropic mesh refinement for the oseen problem. Appl. Numer. Math. 58, 1830–1843 (2008)CrossRefGoogle Scholar
  58. 58.
    Turner, D.Z., Nakshatrala, K.B., Hjelmstad, K.D.: On the stability of bubble functions and a stabilized mixed finite element formulation for the stokes problem. Int. J. Numer. Methods Fluids 60(12), 1291–1314 (2009)CrossRefGoogle Scholar
  59. 59.
    Vialov, S.: Regularities of glacial shields movement and the theory of plastic viscous flow. IAHS 47, 266–275 (1958)Google Scholar
  60. 60.
    Zhang, H., Ju, L., Gunzburger, M., Ringler, T., Price, S.: Coupled models and parallel simulations for three-dimensional full-Stokes ice sheet modeling. Numer. Math. Theor. Meth. Appl. 4, 359–381 (2011)Google Scholar
  61. 61.
    Zwinger, T., Greve, R., Gagliardini, O., Shiraiwa, T., Lyly, M.: A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier. Kamchatka Ann. Glaciol. 45(1), 29–37 (2007)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physical GeographyStockholm UniversityStockholmSweden
  2. 2.Division of Scientific Computing, Department of Information TechnologyUppsala UniversityUppsalaSweden
  3. 3.The Mathematical SeminarUniversity of KielKielGermany

Personalised recommendations