Advertisement

Computational Geosciences

, Volume 22, Issue 2, pp 587–605 | Cite as

Calibration of categorical simulations by evolutionary gradual deformation method

  • Hassan RezaeeEmail author
  • Denis Marcotte
Original Paper

Abstract

Methods to simulate facies (or categorical) fields are numerous. However, calibration of simulated facies fields to large-scale or dynamic data still remains an important challenge due to the discrete nature of the fields, the non-linearity of the response with respect to the facies fields, and the non-derivability of the objective function used in calibration. A new gradual deformation method (GDM) is presented and tested for the calibration of facies realizations obtained by patch-multipoint simulation (MPS). The proposed method borrows ideas from pluriGaussian simulation, evolutionary algorithms, and GDM. Various test cases are considered: proportion maps, section of seismic amplitudes, inlet to outlet travel time along the shortest path, and water-cut curves obtained with a flow simulator. Both conditional/unconditional MPS simulations and 2D/3D problems are considered. In all studied test cases, the new GDM approach has provided excellent calibration to the target variables. The method is general as it can be used in conjunction with any facies simulator.

Keywords

Gradual deformation Facies field Gaussian field Multipoint simulation Gibbs sampler Calibration PluriGaussian simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Research was partly financed by NSERC (RGPIN-2015-06653). Also authors would like to express their thanks to Pierre Biver and Tatiana Chugunova from TOTAL S.A. for providing the TI in Fig. 1.

References

  1. 1.
    Abdollahifard, M.J., Faez, K.: Stochastic simulation of patterns using Bayesian pattern modeling. Comput. Geosci. 17(1), 99–116 (2013)CrossRefGoogle Scholar
  2. 2.
    Allard, D., D’Or, D., Froidevaux, R.: An efficient maximum entropy approach for categorical variable prediction. Eur. J. Soil Sci. 62(3), 381–393 (2011)CrossRefGoogle Scholar
  3. 3.
    Armstrong, M., Galli, A., Beucher, H., Loc’h, G., Renard, D., Doligez, B., Eschard, R., Geffroy, F.: PluriGaussian simulations in geosciences. Springer Science & Business Media (2011)Google Scholar
  4. 4.
    Audet, C., Dennis, J.E. Jr.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11(3), 573–594 (2001)CrossRefGoogle Scholar
  5. 5.
    Caers, J.: Geostatistical history matching under training-image based geological model constraints. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2002)Google Scholar
  6. 6.
    Caers, J.: Efficient gradual deformation using a streamline-based proxy method. J. Petrol. Sci. Eng. 39(1), 57–83 (2003)CrossRefGoogle Scholar
  7. 7.
    Chugunova, T.L., Hu, L.Y.: Multiple-point simulations constrained by continuous auxiliary data. Math. Geosci. 40(2), 133–146 (2008)CrossRefGoogle Scholar
  8. 8.
    Dickinson, G.: Geological aspects of abnormal reservoir pressures in gulf coast Louisiana. AAPG Bull. 37(2), 410–432 (1953)Google Scholar
  9. 9.
    Dijkstra, EW.: A note on two problems in connexion with graphs. Numer. Math. 40(2), 269–271 (1959)CrossRefGoogle Scholar
  10. 10.
    Dovera, L., Della Rossa, E.: Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput. Geosci. 15(2), 307–323 (2011)CrossRefGoogle Scholar
  11. 11.
    El Ouassini, A., Saucier, A., Marcotte, D., Favis, B.D.: A patchwork approach to stochastic simulation: a route towards the analysis of morphology in multiphase systems. Chaos, Solitons Fractals 36(2), 418–436 (2008)CrossRefGoogle Scholar
  12. 12.
    Emery, X.: Simulation of geological domains using the pluriGaussian model: new developments and computer programs. Comput. Geosci. 33(9), 1189–1201 (2007)CrossRefGoogle Scholar
  13. 13.
    Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53(4), 343–367 (2003)CrossRefGoogle Scholar
  14. 14.
    Freulon, X., de Fouquet, C.: Conditioning a Gaussian model with inequalities. In: Geostatistics Tróia92, pp. 201–212. Springer, Berlin (1993)Google Scholar
  15. 15.
    Galli, A., Beucher, H., Le Loch, G., Doligez, B.: The pros and cons of the truncated Gaussian method. In: Geostatistical Simulations, pp. 217–233. Springer, Berlin (1994)Google Scholar
  16. 16.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. (6), 721–741 (1984)Google Scholar
  17. 17.
    Guardiano, F.B., Srivastava, R.M.: Multivariate geostatistics: beyond bivariate moments. In: Geostatistics Troia ’92, pp. 133–144. Springer, Berlin (1993)Google Scholar
  18. 18.
    Hearn, C., Ebanks, W. Jr., Tye, R., Ranganathan, V., et al.: Geological factors influencing reservoir performance of the Hartzog Draw field, Wyoming. J. Pet. Technol. 36(08), 1–335 (1984)CrossRefGoogle Scholar
  19. 19.
    Heidari, L., Gervais, V., Le Ravalec, M.,Wackernagel, H.: History matching of petroleum reservoir models by the ensemble Kalman filter and parameterization methods. Comput. Geosci. 55, 84–95 (2013)CrossRefGoogle Scholar
  20. 20.
    Holland, JH: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)Google Scholar
  21. 21.
    Hooke, R., Jeeves, T.A.: “Direct Search” solution of numerical and statistical problems. J. ACM (JACM) 8(2), 212–229 (1961)CrossRefGoogle Scholar
  22. 22.
    Hu, LY: Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math. Geol. 32(1), 87–108 (2000)CrossRefGoogle Scholar
  23. 23.
    Hu, LY.: Combining dependent realizations within the gradual deformation method. In: Proceedings of the 2001 Annual Conference of the International Association for Mathematical Geology (2001)Google Scholar
  24. 24.
    Hu, LY.: Combination of dependent realizations within the gradual deformation method. Math. Geol. 34(8), 953– 963 (2002)CrossRefGoogle Scholar
  25. 25.
    Hu, L.Y., Blanc, G., Noetinger, B.: Gradual deformation and iterative calibration of sequential stochastic simulations. Math. Geol. 33(4), 475–489 (2001)CrossRefGoogle Scholar
  26. 26.
    Hu, L., Zhao, Y., Liu, Y., Scheepens, C., Bouchard, A.: Updating multipoint simulations using the ensemble Kalman filter. Comput. Geosci. 51, 7–15 (2013)CrossRefGoogle Scholar
  27. 27.
    Jafarpour, B.: Wavelet reconstruction of geologic facies from nonlinear dynamic flow measurements. IEEE Trans. Geosci. Remote Sens. 49(5), 1520–1535 (2011)CrossRefGoogle Scholar
  28. 28.
    Jafarpour, B., McLaughlin, D.B., et al: Reservoir characterization with the discrete cosine transform. SPE J. 14(01), 182– 201 (2009)CrossRefGoogle Scholar
  29. 29.
    Journel, AG.: Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses. Math. Geol. 34(5), 573–596 (2002)CrossRefGoogle Scholar
  30. 30.
    Le Loc’h, G., Galli, A.: Truncated pluriGaussian method: theoretical and practical points of view. Geostat. Wollongong 96(1), 211–222 (1997)Google Scholar
  31. 31.
    Le Ravalec-Dupin, M., Hu, L.Y.: Gradual deformation of boolean simulations. In: Geostatistics Banff 2004, pp. 939–948. Springer, Berlin (2005)Google Scholar
  32. 32.
    Le Ravalec, M., Noetinger, B., Hu, L.Y.: The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations. Math. Geol. 32(6), 701–723 (2000)CrossRefGoogle Scholar
  33. 33.
    Lie, KA.: An introduction to reservoir simulation using matlab. SINTEF ICT (2014)Google Scholar
  34. 34.
    Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source Matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)CrossRefGoogle Scholar
  35. 35.
    Liu, N., Oliver, D.S.: Ensemble Kalman filter for automatic history matching of geologic facies. J. Pet. Sci. Eng. 47(3), 147–161 (2005)CrossRefGoogle Scholar
  36. 36.
    Lu, B., Torquato, S.: Lineal-path function for random heterogeneous materials. Phys. Rev. A 45(2), 922 (1992)CrossRefGoogle Scholar
  37. 37.
    Mariethoz, G., Pi, R., Cornaton, F., Jaquet, O.: Truncated pluriGaussian simulations to characterize aquifer heterogeneity. Ground Water 47(1), 13–24 (2009)CrossRefGoogle Scholar
  38. 38.
    Mariethoz, G., Renard, P., Straubhaar, J.: The direct sampling method to perform multiple-point geostatistical simulations. Water Resour. Res. 46(11) (2010)Google Scholar
  39. 39.
    Peters, E.: Performance of the ensemble Kalman filter outside of existing wells for a channelized reservoir. Comput. Geosci. 15(2), 345–358 (2011)CrossRefGoogle Scholar
  40. 40.
    Pirot, G., Linde, N., Mariethoz, G., Bradford, J.: Probabilistic inversion with graph cuts: application to the Boise hydrogeophysical research site. Water Resour. Res (2017).  https://doi.org/10.1002/2016WR019347
  41. 41.
    Rezaee, H., Marcotte, D.: Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates. Stoch. Environ. Res. Risk Assess. 31(7), 1727–1745 (2016)CrossRefGoogle Scholar
  42. 42.
    Rezaee, H., Mariethoz, G., Koneshloo, M., Asghari, O.: Multiple-point geostatistical simulation using the bunch-pasting direct sampling method. Comput. Geosci. 54, 293–308 (2013)CrossRefGoogle Scholar
  43. 43.
    Rezaee, H., Marcotte, D., Tahmasebi, P., Saucier, A.: Multiple-point geostatistical simulation using enriched pattern databases. Stoch. Environ. Res. Risk Assess. 29(3), 893–913 (2015)CrossRefGoogle Scholar
  44. 44.
    Sebacher, B., Stordal, A.S., Hanea, R.: Bridging multipoint statistics and truncated Gaussian fields for improved estimation of channelized reservoirs with ensemble methods. Comput. Geosci. 19(2), 341–369 (2015)CrossRefGoogle Scholar
  45. 45.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc , Orlando (1983)Google Scholar
  46. 46.
    Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., Besson, O.: An improved parallel multiple-point algorithm using a list approach. Math. Geosci. 43(3), 305–328 (2011)CrossRefGoogle Scholar
  47. 47.
    Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34(1), 1–21 (2002)CrossRefGoogle Scholar
  48. 48.
    Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16(3), 779–797 (2012)CrossRefGoogle Scholar
  49. 49.
    Walgenwitz, A., Allard, D., Biver, P.: Flexible objects—a way to generate more realistic object-based simulations. In: Petroleum Geostatistics (2015)Google Scholar
  50. 50.
    Ying, Z., Gomez-Hernandez, J.: An improved deformation algorithm for automatic history matching: Report 13. Stanford Center for Reservoir Forecasting (SCRF) Annual Report, Stanford (2000)Google Scholar
  51. 51.
    Zahner, T, Lochbühler, T, Mariethoz, G, Linde, N.: Image synthesis with graph cuts: a fast model proposal mechanism in probabilistic inversion. Geophys. J. Int. 204(2), 1179– 1190 (2016)CrossRefGoogle Scholar
  52. 52.
    Zhang, Y.: Ensemble methods of data assimilation in porous media flow for non-gaussian prior probability density. PhD thesis, The University of Bergen (2015)Google Scholar
  53. 53.
    Zhang, T., Du, Y., Huang, T., Li, X.: GPU-accelerated 3D reconstruction of porous media using multiple-point statistics. Comput. Geosci. 19(1), 79–98 (2015a)Google Scholar
  54. 54.
    Zhang, T., Du, Y., Huang, T., Peng, Y.: Reconstruction of spatial data using isometric mapping and multiple-point statistics. Comput. Geosci. 19(5), 1047–1062 (2015b)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Civil, Geological and Mining DepartmentPolytechnique MontréalMontréalCanada

Personalised recommendations