Advertisement

Computational Geosciences

, Volume 22, Issue 2, pp 543–563 | Cite as

A finite volume / discontinuous Galerkin method for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging

  • Florian Frank
  • Chen Liu
  • Faruk O. Alpak
  • Beatrice Riviere
Original Paper

Abstract

A numerical method is formulated for the solution of the advective Cahn–Hilliard (CH) equation with constant and degenerate mobility in three-dimensional porous media with non-vanishing velocity on the exterior boundary. The CH equation describes phase separation of an immiscible binary mixture at constant temperature in the presence of a conservation constraint and dissipation of free energy. Porous media / pore-scale problems specifically entail images of rocks in which the solid matrix and pore spaces are fully resolved. The interior penalty discontinuous Galerkin method is used for the spatial discretization of the CH equation in mixed form, while a semi-implicit convex–concave splitting is utilized for temporal discretization. The spatial approximation order is arbitrary, while it reduces to a finite volume scheme for the choice of element-wise constants. The resulting nonlinear systems of equations are reduced using the Schur complement and solved via inexact Newton’s method. The numerical scheme is first validated using numerical convergence tests and then applied to a number of fundamental problems for validation and numerical experimentation purposes including the case of degenerate mobility. First-order physical applicability and robustness of the numerical method are shown in a breakthrough scenario on a voxel set obtained from a micro-CT scan of a real sandstone rock sample.

Keywords

Cahn–Hilliard equation Phase field Advection Discontinuous Galerkin Finite volumes Micro-CT scan Voxel sets Porous media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998).  https://doi.org/10.1146/annurev.fluid.30.1.139 Google Scholar
  2. 2.
    Kim, J.: Phase-field models for multi-component fluid flows. Communications in Computational Physics 12 (3), 613–661 (2012).  https://doi.org/10.4208/cicp.301110.040811a Google Scholar
  3. 3.
    Morral, J., Cahn, J.: Spinodal decomposition in ternary systems. Acta Metall. 19(10), 1037–1045 (1971).  https://doi.org/10.1016/0001-6160(71)90036-8 Google Scholar
  4. 4.
    Boyer, F., Lapuerta, C.: Study of a three component Cahn-Hilliard flow model. ESAIM: Mathematical Modelling and Numerical Analysis 40(4), 653–687 (2006).  https://doi.org/10.1051/m2an:2006028 Google Scholar
  5. 5.
    Kim, J.: A numerical method for the Cahn-Hilliard equation with a variable mobility. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1560–1571 (2007).  https://doi.org/10.1016/j.cnsns.2006.02.010 Google Scholar
  6. 6.
    Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2009).  https://doi.org/10.1007/s11242-009-9408-z Google Scholar
  7. 7.
    Kim, J., Lowengrub, J.: Phase field modeling and simulation of three-phase flows. Interfaces and Free Boundaries 7(4), 435–466 (2005).  https://doi.org/10.4171/IFB/132 Google Scholar
  8. 8.
    Yue, P., Feng, J.J., Liu, C., Shen, J.: Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129(3), 163–176 (2005).  https://doi.org/10.1016/j.jnnfm.2005.07.002 Google Scholar
  9. 9.
    Ding, H., Spelt, P.: Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E. 75, 046708–1–046708–8 (2007).  https://doi.org/10.1103/PhysRevE.75.046708 Google Scholar
  10. 10.
    He, Q., Glowinski, R., Wang, X.-P.: A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230, 4991–5009 (2011).  https://doi.org/10.1016/j.jcp.2011.03.022 Google Scholar
  11. 11.
    Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000).  https://doi.org/10.1017/S0022112099006874 Google Scholar
  12. 12.
    Khatavkar, V.V., Anderson, P.D., Duineveld, P.C., Meijer, H.H.E.: Diffuse-interface modelling of droplet impact. J. Fluid Mech. 581, 97–127 (2007).  https://doi.org/10.1017/S002211200700554X Google Scholar
  13. 13.
    Lee, H.G., Kim, J.: Accurate contact angle boundary conditions for the Cahn-Hilliard equations. Comput. Fluids 44(1), 178–186 (2011).  https://doi.org/10.1016/j.compfluid.2010.12.031 Google Scholar
  14. 14.
    Yue, P., Feng, J.J.: Wall energy relaxation in the Cahn-Hilliard model for moving contact lines. Phys. Fluids 23(1) (2011).  https://doi.org/10.1063/1.3541806
  15. 15.
    Alpak, F.O., Riviere, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Comput. Geosci., 1–28 (2016).  https://doi.org/10.1007/s10596-015-9551-2
  16. 16.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958).  https://doi.org/10.1063/1.1744102 Google Scholar
  17. 17.
    Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)Google Scholar
  18. 18.
    Bai, F., Elliott, C.M., Gardiner, A., Spence, A., Stuart, A.M.: The viscous Cahn-Hilliard equation. I. Computations. Nonlinearity 8(2), 131 (1995).  https://doi.org/10.1088/0951-7715/8/2/002 Google Scholar
  19. 19.
    Emmerich, H.: The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models. Springer Publishing Company Inc. (2011)Google Scholar
  20. 20.
    Saxena, R., Caneba, G.T.: Studies of spinodal decomposition in a ternary polymer-solvent-nonsolvent system. Polym. Eng. Sci. 42(5), 1019–1031 (2002).  https://doi.org/10.1002/pen.11009 Google Scholar
  21. 21.
    Aristotelous, A.C., Karakashian, O., Wise, S.M.: A mixed discontinuous Galerkin convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete and Continuous Dynamical Systems – Series B 18(9), 2211–2238 (2013).  https://doi.org/10.3934/dcdsb.2013.18.2211 Google Scholar
  22. 22.
    Cogswell, D.A.: A Phase-Field Study of Ternary Multiphase Microstructures. Ph.D. thesis, Massachusetts Institute of Technology. Dept. of Materials Science and Engineering (2010). http://hdl.handle.net/1721.1/59704
  23. 23.
    Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth—I. Model and numerical method. J. Theor. Biol. 253(3), 524–543 (2008).  https://doi.org/10.1016/j.jtbi.2008.03.027 Google Scholar
  24. 24.
    Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30(2), 180–203 (2014).  https://doi.org/10.1002/cnm.2597 Google Scholar
  25. 25.
    Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems 35(6), 2423–2442 (2015).  https://doi.org/10.3934/dcds.2015.35.2423 Google Scholar
  26. 26.
    Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16 (1), 285–291 (2007).  https://doi.org/10.1109/TIP.2006.887728 Google Scholar
  27. 27.
    Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. Arch. Comput. Meth. Eng. 22(2), 269–289 (2015).  https://doi.org/10.1007/s11831-014-9112-1 Google Scholar
  28. 28.
    Davis, H.T., Scriven, L.E.: Stress and Structure in Fluid Interfaces. In: Advances in Chemical Physics, pp 357–454. Wiley, New York (2007).  https://doi.org/10.1002/9780470142691.ch6
  29. 29.
    Saylor, D.M., Kim, C.-S., Patwardhan, D.V., Warren, J.A.: Diffuse-interface theory for structure formation and release behavior in controlled drug release systems. Acta Biomater. 3(6), 851–864 (2007).  https://doi.org/10.1016/j.actbio.2007.03.011 Google Scholar
  30. 30.
    Furihata, D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math. 87(4), 675–699 (2001).  https://doi.org/10.1007/PL00005429 Google Scholar
  31. 31.
    Cueto-Felgueroso, L., Peraire, J.: A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations. J. Comput. Phys. 227(24), 9985–10017 (2008).  https://doi.org/10.1016/j.jcp.2008.07.024 Google Scholar
  32. 32.
    Kim, J., Kang, K.: A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility. Appl. Numer. Math. 59(5), 1029–1042 (2009).  https://doi.org/10.1016/j.apnum.2008.04.004 Google Scholar
  33. 33.
    Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989).  https://doi.org/10.1137/0726049 Google Scholar
  34. 34.
    Elliott, C.M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996).  https://doi.org/10.1137/S0036141094267662 Google Scholar
  35. 35.
    Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn-Hilliard equation. J. Comput. Phys. 229(19), 7361–7372 (2010).  https://doi.org/10.1016/j.jcp.2010.06.020 Google Scholar
  36. 36.
    Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991).  https://doi.org/10.1137/0728069 Google Scholar
  37. 37.
    Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230 (15), 6037–6060 (2011).  https://doi.org/10.1016/j.jcp.2011.04.012 Google Scholar
  38. 38.
    Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992).  https://doi.org/10.1007/BF01385847 Google Scholar
  39. 39.
    Barrett, W.J., Blowey, F.J., Garcke, H.: Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80(4), 525–556 (1998).  https://doi.org/10.1007/s002110050377 Google Scholar
  40. 40.
    Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54(5), 575–590 (1989).  https://doi.org/10.1007/BF01396363 Google Scholar
  41. 41.
    Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99(1), 47–84 (2004).  https://doi.org/10.1007/s00211-004-0546-5 Google Scholar
  42. 42.
    He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn-Hilliard equation. Appl. Numer. Math. 57(5–7), 616–628 (2007).  https://doi.org/10.1016/j.apnum.2006.07.026. special Issue for the International Conference on Scientific ComputingGoogle Scholar
  43. 43.
    Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008).  https://doi.org/10.1016/j.cma.2008.05.003 Google Scholar
  44. 44.
    Wu, X., van Zwieten, G.J., van der Zee, K.G., Simsek, G.: Adaptive time-stepping for Cahn-Hilliard-type equations with application to diffuse-interface tumor-growth models. In: de Almeida, J.P.M., Díez, P., Tiago, C., Parés, N. (eds.) VI International Conference on Adaptive Modeling and Simulation (2013)Google Scholar
  45. 45.
    Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006).  https://doi.org/10.1016/j.jcp.2006.03.010 Google Scholar
  46. 46.
    Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)Google Scholar
  47. 47.
    Aristotelous, A.C., Karakashian, O.A., Wise, S.M.: Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source. IMA J. Numer. Anal. 35(3), 1167–1198 (2015).  https://doi.org/10.1093/imanum/dru035 Google Scholar
  48. 48.
    Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009).  https://doi.org/10.1137/080726768 Google Scholar
  49. 49.
    Cockburn, B., Shu, C.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998).  https://doi.org/10.1137/S0036142997316712 Google Scholar
  50. 50.
    Aizinger, V., Dawson, C., Cockburn, B., Castillo, P.: The local discontinuous Galerkin method for contaminant transport. Adv. Water Resour. 24(1), 73–87 (2000).  https://doi.org/10.1016/S0309-1708(00)00022-1 Google Scholar
  51. 51.
    Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007).  https://doi.org/10.1016/j.jcp.2007.08.001 Google Scholar
  52. 52.
    Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Communications in Computational Physics 5(2), 821–835 (2009)Google Scholar
  53. 53.
    Guo, R., Xu, Y.: Efficient solvers of discontinuous Galerkin discretization for the Cahn-Hilliard equations. J. Sci. Comput. 58(2), 380–408 (2013).  https://doi.org/10.1007/s10915-013-9738-4 Google Scholar
  54. 54.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977).  https://doi.org/10.1103/RevModPhys.49.435 Google Scholar
  55. 55.
    Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012).  https://doi.org/10.1142/S0218202511500138 Google Scholar
  56. 56.
    Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn-Hilliard model. ESAIM: M2AN 45(4), 697–738 (2011).  https://doi.org/10.1051/m2an/2010072 Google Scholar
  57. 57.
    Jingxue, Y.: On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation. J. Differ. Equ. 97(2), 310–327 (1992)Google Scholar
  58. 58.
    Elliott, C.: The Cahn-Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, Vol. 88 of International Series of Numerical Mathematics, pp 35–73. Birkhäuser, Basel (1989).  https://doi.org/10.1007/978-3-0348-9148-6_3
  59. 59.
    Elliott, C., Songmu, Z.: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96(4), 339–357 (1986)Google Scholar
  60. 60.
    Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks—part I: imaging and segmentation. Comput. Geosci. 50(Supplement C), 25–32 (2013).  https://doi.org/10.1016/j.cageo.2012.09.005 Google Scholar
  61. 61.
    Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 454(1978), 2617–2654 (1998).  https://doi.org/10.1098/rspa.1998.0273 Google Scholar
  62. 62.
    Qiao, Z., Sun, S.: Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state. SIAM J. Sci. Comput. 36(4), B708–B728 (2014).  https://doi.org/10.1137/130933745 Google Scholar
  63. 63.
    Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993).  https://doi.org/10.1137/0730084 Google Scholar
  64. 64.
    Eyre, J.D.: An unconditionally stable one-step scheme for gradient systems (1997)Google Scholar
  65. 65.
    Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Symposia BB – Computational & Mathematical Models of Microstructural Evolution, vol. 529 of MRS Proceedings.  https://doi.org/10.1557/PROC-529-39 (1998)
  66. 66.
    de Mello, E., da Silveira Filho, O.T.: Numerical study of the Cahn-Hilliard equation in one, two and three dimensions. Physica A: Statistical Mechanics and its Applications 347(1–4), 429–443 (2005).  https://doi.org/10.1016/j.physa.2004.08.076 Google Scholar
  67. 67.
    Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, 708–725 (2014).  https://doi.org/10.1016/j.jcp.2013.10.028 Google Scholar
  68. 68.
    Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999).  https://doi.org/10.1137/S0036142997331669 Google Scholar
  69. 69.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Applied Mathematical Sciences (2004)Google Scholar
  70. 70.
    Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (2008)Google Scholar
  71. 71.
    Chidyagwai, P., Mishev, I., Rivière, B.: On the coupling of finite volume and discontinuous Galerkin method for elliptic problems. J. Comput. Appl. Math. 235(8), 2193–2204 (2011).  https://doi.org/10.1016/j.cam.2010.10.017 Google Scholar
  72. 72.
    Aristotelous, A.C.: Adaptive Discontinuous Galerkin Finite Element Methods for a Diffuse Interface Model of Biological Growth. Ph.D. Thesis, University of Tennessee (2011). http://trace.tennessee.edu/utk_graddiss/1051
  73. 73.
    Lee, A.A., Münch, A., Süli, E.: Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Appl. Math. 76(2), 433–456 (2016).  https://doi.org/10.1137/140960189 Google Scholar
  74. 74.
    Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009).  https://doi.org/10.1093/imanum/drm050 Google Scholar
  75. 75.
    Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002).  https://doi.org/10.1137/S1064827501388339 Google Scholar
  76. 76.
    Hanisch, M.: Multigrid preconditioning for the biharmonic Dirichlet problem. SIAM J. Numer. Anal. 30(1), 184–214 (1993).  https://doi.org/10.1137/0730009 Google Scholar
  77. 77.
    Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16 (1), 1–3 (1966)Google Scholar
  78. 78.
    Kelley, C.T.: Solving nonlinear equations with newton’s method. Society for Industrial and Applied Mathematics (2003).  https://doi.org/10.1137/1.9780898718898
  79. 79.
    Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, L.D.: P-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 207(1), 92–113 (2005).  https://doi.org/10.1016/j.jcp.2005.01.005 Google Scholar
  80. 80.
    Luo, H., Baum, J.D., Löhner, R.: Fast p-multigrid discontinuous Galerkin method for compressible flows at all speeds. AIAA journal 46(3), 635–652 (2008)Google Scholar
  81. 81.
    Aizinger, V., Kuzmin, D., Korous, L.: Scale separation in fast hierarchical solvers for discontinuous Galerkin methods. Appl. Math. Comput. 266, 838–849 (2015).  https://doi.org/10.1016/j.amc.2015.05.047 Google Scholar
  82. 82.
    Thiele, C., Araya-Polo, M., Alpak, F.O., Riviere, B., Frank, F.: Inexact hierarchical scale separation: a two-scale approach for linear systems from discontinuous Galerkin discretizations. Comput. Math. Appl. (2017).  https://doi.org/10.1016/j.camwa.2017.06.025
  83. 83.
    Yue, P., Zhou, C., Feng, J.J.: Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223(1), 1–9 (2007)Google Scholar
  84. 84.
    Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118(2), 197–228 (2010).  https://doi.org/10.1007/s00211-010-0333-4 Google Scholar
  85. 85.
    Grossman, M., Araya-Polo, M., Alpak, F., Frank, F., Limbeck, J., Sarkar, V.: Analysis of sparse matrix-vector multiply for large sparse linear systems. In: ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery (2016).  https://doi.org/10.3997/2214-4609.201601798. http://www.earthdoc.org/publication/publicationdetails/?publication=86246
  86. 86.
    Grossman, M., Thiele, C., Araya-Polo, M., Frank, F., Alpak, F.O., Sarkar, V.: A survey of sparse matrix-vector multiplication performance on large matrices. In: Rice Oil & Gas High Performance Computing Workshop (2016). arXiv:1608.00636
  87. 87.
    Thiele, C., Araya-Polo, M., Stoyanov, D., Frank, F., Alpak, F.O.: Asynchronous hybrid parallel spmv in an industrial application. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp 1196–1201 (2016).  https://doi.org/10.1109/CSCI.2016.0226

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computational and Applied MathematicsRice UniversityHoustonUSA
  2. 2.Shell Technology CenterShell International Exploration and Production Inc.HoustonUSA

Personalised recommendations