Advertisement

Computational Geosciences

, Volume 22, Issue 2, pp 505–526 | Cite as

Analytical and numerical solutions for carbonated waterflooding

  • A. C. Alvarez
  • J. Bruining
  • W. J. Lambert
  • D. Marchesin
Original Paper
  • 174 Downloads

Abstract

We develop a Riemann solver for transport problems including geochemistry related to oil recovery. The example considered here concerns one-dimensional incompressible flow in porous media and the transport for several chemical components, namely H2O, H+, OH, CO2, \(\text {CO}_{3}^{2-}\), \(\text {HCO}_{3}^{-}\), and decane; they are in chemical equilibrium in the aqueous and oleic phases, leading to mass transfer of CO2 between the oleic and aqueous phases. In our ionic model, we employ equations with zero diffusion coefficients. We do so because it is well known that for upscaled equations, the convection terms dominate the diffusion terms. The Riemann solution for this model can therefore be applied for upscaled transport processes in enhanced oil recovery involving geochemical aspects. In our example, we formulate the conservation equations of hydrogen, oxygen, hydrogen, and decane, in which we substitute regression expressions that are obtained by geochemical software. This can be readily done because Gibbs phase rule together with charge balance shows that all compositions can be rewritten in terms of a single composition, which we choose to be the hydrogen ion concentration (p H). In our example, we use the initial and boundary conditions for the carbonated aqueous phase injection in an oil reservoir containing connate water with some carbon dioxide. We compare the Riemann solution with a numerical solution, which includes capillary and diffusion effects. The significant new contribution is the effective Riemann solver we developed to obtain solutions for oil recovery problems including geochemistry and a variable total Darcy velocity, a situation in which fractional flow theory does not readily apply. We thus obtain an accurate solution for a carbonated waterflood, which elucidates some mechanisms of low salinity carbonated waterflooding.

Keywords

Riemann problem Waterflooding Enhanced oil recovery Reservoir geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work was supported in part by the following: CNPq under grants 402299/2012-4, 301564/2009-4, and 470635/2012-6; FAPERJ under grants E-26/111.416/2010, E-26/ 102.965/2011, E-26/110.658/2012, E-26/111.369/2012, E-26/11011 4.110/2013, ANP-731948/2010, and PRH32-6000.0069459.11.4, and CAPES Nuffic-024/2011, Technical University of Delft, Section Petroleum Engineering.

References

  1. 1.
    De Nevers, N.: A calculation method for carbonated water flooding. Soc. Pet. Eng. J. 4(1), 9–20 (1964)CrossRefGoogle Scholar
  2. 2.
    Mansoori, J.: Compositional modeling of CO2 flooding and the effect of CO2 water solubility. Soc. Pet. Eng. J. (11438) (1982)Google Scholar
  3. 3.
    Chang, Y.B., Coats, B.K., Nolen, J.S.: A compositional model for CO2 floods including CO2 solubility in water. Permian basin oil and gas recovery conference. Soc. Pet. Eng. J., (1), 155–160 (1996)Google Scholar
  4. 4.
    Foroozesh, J., Jamiolahmady, M., Sohrabi, M., Ireland, S.: Non-equilibrium based compositional simulation of carbonated water injection EOR technique. In: ECMOR XIV-14Th European Conference on the Mathematics of Oil Recovery, EAGE Publishing BV (2014)Google Scholar
  5. 5.
    Farajzadeh, R., Matsuura, T., van Batenburg, D., Dijk, H.: Detailed modeling of the alkali/surfactant/polymer (ASP) process by coupling a multipurpose reservoir simulator to the chemistry package PHREEQC. SPE Reserv. Eval. Eng. 15(4), 423–435 (2012)CrossRefGoogle Scholar
  6. 6.
    Alvarez, A.C., Blom, T., Lambert, W.J., Bruining, J., Marchesin, D.: Analytical and numerical validation of a model for flooding by saline carbonated water. J. Petrol. Sci. Eng.  https://doi.org/10.1016/j.petrol.2017.09.012 (2017)
  7. 7.
    Bryant, S., Schechter, R., Lake, L.: Interactions of precipitation/dissolution waves and ion exchange in flow through permeable media. AIChE J. 32(5), 751–764 (1986)CrossRefGoogle Scholar
  8. 8.
    Bryant, S., Schechtextter, R., Lake, L.: Mineral sequences in precipitation/dissolution waves. AIChE J. 33(8), 1271–1287 (1987)CrossRefGoogle Scholar
  9. 9.
    Helfferich, F.G.: The theory of precipitation/dissolution waves. AIChE J. 35(1), 75–87 (1989)CrossRefGoogle Scholar
  10. 10.
    Lake, L.W.: Enhanced Oil Recovery. Prentice Hall Inc, Old Tappan (1989)Google Scholar
  11. 11.
    Lake, L.W., Johns, R., Rossen, W., Pope, G.: Fundamentals of enhanced oil recovery. Society of Petroleum Engineers (1986)Google Scholar
  12. 12.
    Helfferich, F.G.: Theory of multicomponent, multiphase displacement in porous media. Soc. Pet. Eng. J. 21 (01), 51–62 (1981)CrossRefGoogle Scholar
  13. 13.
    Dumore, J., Hagoort, J., Risseeuw, A.: An analytical model for one-dimensional, three-component condensing and vaporizing gas drives. Soc. Pet. Eng. J. 24(02), 169–179 (1984)CrossRefGoogle Scholar
  14. 14.
    Johns, R.T., Dindoruk, B., Orr, F.M.: Analytical theory of combined condensing/vaporizing gas drives. Soc. Pet. Eng. J. 1(02), 7–16 (1993)Google Scholar
  15. 15.
    Pope, G.A.: The application of fractional flow theory to enhanced oil recovery. Soc. Pet. Eng. J. 20(03), 191–205 (1980)CrossRefGoogle Scholar
  16. 16.
    Welge, H., Johnson, E., Ewing, S.P. Jr., Brinkman, F.: The linear displacement of oil from porous media by enriched gas. Soc. Pet. Eng. J. 13(08), 787–796 (1961)Google Scholar
  17. 17.
    Buckley, S., Leverett, M.: Mechanism of fluid displacement in sands. Trans. AIME, SPE-942107-G 146 (01), 107–116 (1942)CrossRefGoogle Scholar
  18. 18.
    Leverett, M.: Flow of oil-water mixtures through unconsolidated sands. Trans. AIME 132(01), 149–171 (1939)CrossRefGoogle Scholar
  19. 19.
    Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (4), 697–715 (1965)CrossRefGoogle Scholar
  20. 20.
    Lax, P.: Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10(4), 537–566 (1957)CrossRefGoogle Scholar
  21. 21.
    Liu, T.P.: The Riemann problem for general 2 X 2 conservation laws. Transactions of A.M.S. 199, 89–112 (1974)Google Scholar
  22. 22.
    Liu, T.P.: The Riemann problem for general systems of conservation laws. J. Differ. Equations. 18(1), 218–234 (1975)CrossRefGoogle Scholar
  23. 23.
    Oleinik, A.O.: Discontinuous solutions of nonlinear differential equations. Math. Sot. Transl. Ser. 2(26), 95–172 (1963)Google Scholar
  24. 24.
    Parkhurst, D.L., Appelo, C.: Description of input and examples for PHREEQC version computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Denver (2013)Google Scholar
  25. 25.
    Parkhurst, D.L., Appelo, C., et al.: User’s guide to PHREEQC (version 3): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Denver (1999)Google Scholar
  26. 26.
    Lambert, W., Marchesin, D.: The Riemann problem for multiphase flows in porous media with mass transfer between phases. Journal of Hyperbolic Differential Equations 06(4), 725–751 (2009)CrossRefGoogle Scholar
  27. 27.
    Orr, F.M.: Theory of Gas Injection Processes. Tie-Line Publications (2007)Google Scholar
  28. 28.
    Helmut, W.: Thermal Effects in the Injection of CO2 in Deep Underground Aquifers. PhD thesis, IMPA. Brazil (2011)Google Scholar
  29. 29.
    Wendroff, B.: The Riemann problem for materials with nonconvex equations of state I: isentropic flow. J. Math. Anal. Appl. 38(2), 454–466 (1972)CrossRefGoogle Scholar
  30. 30.
    Bruining, J., Marchesin, D.: Maximal oil recovery by simultaneous condensation of alkane and steam. Phys. Rev. E 75, 036312 (2007)CrossRefGoogle Scholar
  31. 31.
    Eymard, R., Tillier, E.: Mathematical and numerical study of a system of conservation laws. J. Evol. Equ. 7, 197–239 (2007)CrossRefGoogle Scholar
  32. 32.
    Abreu, E., Bustos, A., Lambert, W.: A unsplitting finite volume method for models with stiff relaxation source term. Bull. Braz. Math. Soc. 47, 5–20 (2016)CrossRefGoogle Scholar
  33. 33.
    Lambert, W., Marchesin, D., Bruining, J.: The Riemann solution for the injection of steam and nitrogen in a porous medium. Transp. Porous Media 81, 505–526 (2010)CrossRefGoogle Scholar
  34. 34.
    Appelo, C., Parkhurst, D., Post, V.: Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures. Geochim. Cosmochim. Acta 125, 49–67 (2014)CrossRefGoogle Scholar
  35. 35.
    Appelo, C., Postma, D.: A consistent model for surface complexation on birnessite (M n O 2) and its application to a column experiment. Geochim. Cosmochim. Acta 63(19), 3039–3048 (1999)CrossRefGoogle Scholar
  36. 36.
    Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. Taylor & Francis (2005)Google Scholar
  37. 37.
    Clarke, E.C.W., Glew, D.N.: Evaluation of Debye-Hückel limiting slopes for water between 0 and 150 °C. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 76, 1911–1916 (1980)CrossRefGoogle Scholar
  38. 38.
    Fernandez, D., Goodwin, A., Lemmon, E.W., Sengers, J.L., Williams, R.: A formulation for the static permissibility of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Hückel coefficients. J. Phys. Chem. Ref. Data 26(4), 1125–1166 (1997)CrossRefGoogle Scholar
  39. 39.
    Beyer, R., Staples, B.: Pitzer-Debye-Hückel limiting slopes for water from 0 to 350 C and from saturation to 1 kbar. J. Solut. Chem. 15(9), 749–764 (1986)CrossRefGoogle Scholar
  40. 40.
    Bradley, D.J., Pitzer, K.S.: Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hűckel parameters to 350 °C and 1 kbar. J. Phys. Chem. 83(12), 1599–1603 (1979)CrossRefGoogle Scholar
  41. 41.
    Pitzer, K.S.: Characteristics of very concentrated aqueous solutions. Phys. Chem. Earth 13, 249–272 (1981)CrossRefGoogle Scholar
  42. 42.
    Pitzer, K.S.: A Thermodynamic Model for Aqueous Solutions of Liquid-Like Density. Tech. Rep., Lawrence Berkeley Lab., CA, USA (1987)Google Scholar
  43. 43.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77(19), 2300–2308 (1973)CrossRefGoogle Scholar
  44. 44.
    Poling, B.E., Prausnitz, J.M., O’Connell, J.P., et al.: The Properties of Gases and Liquids, vol. 5. McGraw-Hill, New York (2001)Google Scholar
  45. 45.
    Nagarajan, N., Robinson Jr., R.L.: Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 2. Carbon dioxide + n-decane. J. Chem. Eng. 31(2), 168–171 (1986)Google Scholar
  46. 46.
    Chou, G.F., Forbert, R.R., Prausnitz, J.M.: High-pressure vapor-liquid equilibria for carbon dioxide/n-decane, carbon dioxide/tetralin, and carbon dioxide/n-decane/tetralin at 71.1 and 104.4 °C. J. Chem. Eng. Data 35(1), 26–29 (1990)CrossRefGoogle Scholar
  47. 47.
    Cullick, A.S., Mathis, M.L.: Densities and viscosities of mixtures of carbon dioxide and n-decane from 310 to 403 k and 7 to 30 MPa. J. Chem. Eng. Data 29(4), 393–396 (1984)CrossRefGoogle Scholar
  48. 48.
    Eustaquio-Rincón, R., Trejo, A.: Solubility of n-octadecane in supercritical carbon dioxide at 310, 313, 333, and 353 K, in the range 10–20 MPa. Fluid Phase Equilib. 185(1), 231–239 (2001)CrossRefGoogle Scholar
  49. 49.
    Jennings, D.W., Schucker, R.C.: Comparison of high-pressure vapor-liquid equilibria of mixtures of CO2 or propane with nonane and C9 alkylbenzenes. J. Chem. Eng. Data 41(4), 831–838 (1996)CrossRefGoogle Scholar
  50. 50.
    Kariznovi, M., Nourozieh, H., Abedi, J.: Phase composition and saturated liquid properties in binary and ternary systems containing carbon dioxide, n-decane and n-tetradecane. J. Chem. Thermodyn. 57, 189–196 (2013)CrossRefGoogle Scholar
  51. 51.
    Kukarni, A.A., Zarah, B.Y., Luks, K.D., Kohn, J.P.: Phase-equilibriums behavior of system carbon dioxide-n-decane at low temperatures. J. Chem. Eng. Data 19(1), 92–94 (1974)CrossRefGoogle Scholar
  52. 52.
    Reamer, H., Sage, B.: Phase equilibria in hydrocarbon systems. Volumetric and phase behavior of the n-decane-CO2 system. J. Chem. Eng. Data 8(4), 508–513 (1963)CrossRefGoogle Scholar
  53. 53.
    Shaver, R., Robinson, R. Jr., Gasem, K.: An automated apparatus for equilibrium phase compositions, densities, and interfacial tensions: data for carbon dioxide+ decane. Fluid Phase Equilib. 179(1), 43–66 (2001)CrossRefGoogle Scholar
  54. 54.
    Sander, R.: Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry (1999)Google Scholar
  55. 55.
    Zawisza, A., Malesinska, B.: Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 0.2–5 MPa and at temperatures up to 473 K. J. Chem. Eng. Data 26(4), 388–391 (1981)CrossRefGoogle Scholar
  56. 56.
    Randall, M., Failey, C.F.: The activity coefficient of gases in aqueous salt solutions. Chem. Rev. 4(3), 271–284 (1927)CrossRefGoogle Scholar
  57. 57.
    Randall, M., Failey, C.F.: The activity coefficient of non-electrolytes in aqueous salt solutions from solubility measurements. The salting-out order of the ions. Chem. Rev. 4(3), 285–290 (1927)CrossRefGoogle Scholar
  58. 58.
    Randall, M., Failey, C.F.: The activity coefficient of the undissociated part of weak electrolytes. Chem. Rev. 4(3), 291–318 (1927)CrossRefGoogle Scholar
  59. 59.
    Reardon, E.J., Langmuir, D.: Activity coefficients of MgCO3 and CaSO4 ion pairs as a function of ionic strength. Geochim. Cosmochim. Acta 40(5), 549–554 (1976)CrossRefGoogle Scholar
  60. 60.
    Byrne, P.A., Stoessell, R.K.: Methane solubilities in multisalt solutions. Geochim. Cosmochim. Acta 46 (11), 2395–2397 (1982)CrossRefGoogle Scholar
  61. 61.
    Anderson, G.M., Crerar, D.A.: Thermodynamics in Geochemistry: the Equilibrium Model. Oxford University Press, USA (1993)Google Scholar
  62. 62.
    Israelachvili, J.N.: Intermolecular and Surface Forces: Revised Third Edition. Academic Press (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • A. C. Alvarez
    • 1
  • J. Bruining
    • 2
  • W. J. Lambert
    • 3
  • D. Marchesin
    • 1
  1. 1.Instituto Nacional de Matemática Pura e AplicadaRio de JaneiroBrazil
  2. 2.Civil Engineering and GeosciencesTU DelftDelftThe Netherlands
  3. 3.ICTUniversidade Federal de AlfenasAlfenasBrazil

Personalised recommendations