Computational Geosciences

, Volume 22, Issue 1, pp 179–194 | Cite as

Analysis of a mixed discontinuous Galerkin method for instationary Darcy flow

  • Vadym AizingerEmail author
  • Andreas Rupp
  • Jochen Schütz
  • Peter Knabner
Original Paper


We present an a priori stability and convergence analysis of a new mixed discontinuous Galerkin scheme applied to the instationary Darcy problem. The analysis accounts for a spatially and temporally varying permeability tensor in all estimates. The proposed method is stabilized using penalty terms in the primary and the flux unknowns.


Mixed discontinuous Galerkin method Local discontinuous Galerkin method Instationary Darcy problem Stability and error analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizinger, V.: A discontinuous Galerkin method for two-and three-dimensional shallow-water equations. Ph.D. thesis, The University of Texas at Austin. (2004)
  2. 2.
    Aizinger, V., Dawson, C.: The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput. Methods Appl. Mech. Eng. 196(4), 734–746 (2007). doi: 10.1016/j.cma.2006.04.010. CrossRefGoogle Scholar
  3. 3.
    Aizinger, V., Dawson, C., Cockburn, B., Castillo, P.: The local discontinuous Galerkin method for contaminant transport. Adv. Water Resour. 24(1), 73–87 (2000). doi: 10.1016/S0309-1708(00)00022-1 CrossRefGoogle Scholar
  4. 4.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Num. Anal. 39, 1749–1779 (2002)CrossRefGoogle Scholar
  5. 5.
    Barrios, T.P., Bustinza, R.: An a posteriori error analysis of an augmented discontinuous Galerkin formulation for Darcy flow. Numer. Math. 120(2), 231–269 (2012). doi: 10.1007/s00211-011-0410-3 CrossRefGoogle Scholar
  6. 6.
    Brezzi, F., Hughes, T., Marini, L., Masud, A.: Mixed discontinuous Galerkin methods for Darcy flow. J. Sci. Comput. 22-23, 119–145 (2005). doi: 10.1007/s10915-004-4150-8 CrossRefGoogle Scholar
  7. 7.
    Carrero, J., Cockburn, B., Schötzau, D.: Hybridized globally divergence-free LDG methods. Part I: The Stokes problem. Math. Comput. 75(254), 533–563 (2006). doi: 10.1090/S0025-5718-05-01804-1  10.1090/S0025-5718-05-01804-1 CrossRefGoogle Scholar
  8. 8.
    Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2001). doi: 10.1137/S0036142900371003 CrossRefGoogle Scholar
  9. 9.
    Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71(238), 455–478 (2002). doi: 10.1090/S0025-5718-01-01317-5 CrossRefGoogle Scholar
  10. 10.
    Cheng, J., Shu, C.W.: High order schemes for CFD: a review. Jisuan Wuli/Chinese J. Comput. Phys. 26 (5), 633–655 (2009)Google Scholar
  11. 11.
    Ciarlet, P.G., Lions, J.L.: Handbook of numerical analysis. Elsevier (1990)Google Scholar
  12. 12.
    Cockburn, B., Dawson, C.: Some Extensions of the Local Discontinuous Galerkin Method for Convection-Diffusion Equations in Multidimensions The Proceedings of the Conference on the Mathematics of Finite Elements and Applications: MAFELAP X, pp 225–238. Elsevier (2000)Google Scholar
  13. 13.
    Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)CrossRefGoogle Scholar
  14. 14.
    Dawson, C.: The p k+1s k local discontinuous Galerkin method for elliptic equations. SIAM J. Numer. Anal. 40(6), 2151–2170 (2002). doi: 10.1137/S0036142901397599 CrossRefGoogle Scholar
  15. 15.
    Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. Mathématiques et applications. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004)CrossRefGoogle Scholar
  17. 17.
    Hughes, T.J.R., Masud, A., Wan, J.: A stabilized mixed discontinuous Galerkin method for Darcy flow. Comput. Methods Appl. Mech. Engrg. 195(25–28), 3347–3381 (2006). doi: 10.1016/j.cma.2005.06.018 CrossRefGoogle Scholar
  18. 18.
    Huynh, H.: A Flux Reconstruction Approach to High-Order Schemes including Discontinuous Galerkin Methods. In: Collection of Technical Papers - 18Th AIAA Computational Fluid Dynamics Conference, vol. 1, pp. 698–739. doi: 10.2514/6.2007-4079 (2007)
  19. 19.
    Knabner, P., Angermann, L.: Numerical methods for elliptic and parabolic partial differential equations. Springer (2003)Google Scholar
  20. 20.
    Masud, A., Hughes, T.J.R.: A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg. 191(39-40), 4341–4370 (2002). doi: 10.1016/S0045-7825(02)00371-7 CrossRefGoogle Scholar
  21. 21.
    Nguyen, N., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods. Lecture Notes in Computational Science and Engineering 76 LNCSE, 63–84. doi: 10.1007/978-3-642-15337-2_4 (2011)
  22. 22.
    Peraire, J., Persson, P.O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2007). doi: 10.1137/070685518 CrossRefGoogle Scholar
  23. 23.
    Perugia, I., Schötzau, D.: An hp-analysis of the local discontinuous Galerkin method for diffusion problems. J. Sci. Comput. 17(1), 561–571 (2002). doi: 10.1023/A:1015118613130 CrossRefGoogle Scholar
  24. 24.
    Reed, H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory NM (1973)Google Scholar
  25. 25.
    Shu, C.W.: A brief survey on discontinuous Galerkin methods in computational fluid dynamics. Adv. Mech. 43(6), 541–554 (2013). doi: 10.6052/1000-0992-13-059 Google Scholar
  26. 26.
    Shu, C.W.: High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016). doi: 10.1016/ CrossRefGoogle Scholar
  27. 27.
    Sun, S., Wheeler, M.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43(1), 195–219 (2005). doi: 10.1137/S003614290241708X CrossRefGoogle Scholar
  28. 28.
    Sun, S., Wheeler, M.: Analysis of discontinuous Galerkin methods for multicomponent reactive transport problems. Comput. Math. Appl. 52(5), 637–650 (2006). doi: 10.1016/j.camwa.2006.10.004 CrossRefGoogle Scholar
  29. 29.
    Thomeé, V.: Galerkin Finite Element Methods for Parabolic Problems (2nd ed.) Springer (2006)Google Scholar
  30. 30.
    Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput.Phys. 7(1), 1–46 (2010). doi: 10.4208/cicp.2009.09.023  10.4208/cicp.2009.09.023 Google Scholar
  31. 31.
    Zhang, M., Shu, C.W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13(03), 395–413 (2003). doi: 10.1142/S0218202503002568 CrossRefGoogle Scholar
  32. 32.
    Zhang, X., Shu, C.W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: Survey and new developments. Proc. the Royal Soc. A: Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011). doi: 10.1098/rspa.2011.0153 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chair of Applied Mathematics 1University of Erlangen-NürnbergErlangenGermany
  2. 2.Faculty of SciencesHasselt UniversityDiepenbeekBelgium
  3. 3.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Computing CenterBremerhavenGermany

Personalised recommendations