Advertisement

Computational Geosciences

, Volume 21, Issue 5–6, pp 981–998 | Cite as

Successful application of multiscale methods in a real reservoir simulator environment

  • K.-A. Lie
  • O. MøynerEmail author
  • J. R. Natvig
  • A. Kozlova
  • K. Bratvedt
  • S. Watanabe
  • Z. Li
Original Paper

Abstract

For the past 10 years or so, a number of so-called multiscale methods have been developed as an alternative approach to upscaling and to accelerate reservoir simulation. The key idea of all these methods is to construct a set of prolongation operators that map between unknowns associated with cells in a fine grid holding the petrophysical properties of the geological reservoir model and unknowns on a coarser grid used for dynamic simulation. The prolongation operators are computed numerically by solving localized flow problems, much in the same way as for flow-based upscaling methods, and can be used to construct a reduced coarse-scale system of flow equations that describe the macro-scale displacement driven by global forces. Unlike effective parameters, the multiscale basis functions have subscale resolution, which ensures that fine-scale heterogeneity is correctly accounted for in a systematic manner. Among all multiscale formulations discussed in the literature, the multiscale restriction-smoothed basis (MsRSB) method has proved to be particularly promising. This method has been implemented in a commercially available simulator and has three main advantages. First, the input grid and its coarse partition can have general polyhedral geometry and unstructured topology. Secondly, MsRSB is accurate and robust when used as an approximate solver and converges relatively fast when used as an iterative fine-scale solver. Finally, the method is formulated on top of a cell-centered, conservative, finite-volume method and is applicable to any flow model for which one can isolate a pressure equation. We discuss numerical challenges posed by contemporary geomodels and report a number of validation cases showing that the MsRSB method is an efficient, robust, and versatile method for simulating complex models of real reservoirs.

Keywords

Multiscale Reservoir simulation Finite-volume MsRSB Black-oil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank Schlumberger for the permission to publish, and the Research Council of Norway (grant no. 226035) for partial financial support.

References

  1. 1.
    Aarnes, J.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2(3), 421–439 (2004)CrossRefGoogle Scholar
  2. 2.
    Aarnes, J. E., Kippe, V., Lie, K.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water Resour. 28(3), 257–271 (2005)CrossRefGoogle Scholar
  3. 3.
    Aarnes, J. E., Krogstad, S., Lie, K.: A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul. 5(2), 337–363 (2006)Google Scholar
  4. 4.
    Aarnes, J. E., Krogstad, S., Lie, K.: Multiscale mixed/mimetic methods on corner-point grids. Comput. Geosci. 12(3), 297–315 (2008)CrossRefGoogle Scholar
  5. 5.
    Alpak, F. O., Pal, M., Lie, K.: A multiscale method for modeling flow in stratigraphically complex reservoirs. SPE J. 17(4), 1056–1070 (2012)CrossRefGoogle Scholar
  6. 6.
    Arbogast, T: Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media. In: Numerical Treatment of Multiphase Flows in Porous Media (Beijing, 1999), Lecture Notes in Phys., vol. 552, pp 35–49. Springer, Berlin (2000)Google Scholar
  7. 7.
    Arbogast, T: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Comput. Geosci. 6(3-4), 453–481 (2002)CrossRefGoogle Scholar
  8. 8.
    Arbogast, T: Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal. 42(2), 576–598 (2004)CrossRefGoogle Scholar
  9. 9.
    Arbogast, T., Bryant, S.: A two-scale numerical subgrid technique for waterflood simulations. SPE J. 7 (4), 446–457 (2002)CrossRefGoogle Scholar
  10. 10.
    Arbogast, T., Pencheva, G., Wheeler, M. F., Yotov, I: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)CrossRefGoogle Scholar
  11. 11.
    Arnold, D., Demyanov, V., Tatum, D., Christie, M., Rojas, T., Geiger, S., Corbett, P: Hierarchical benchmark case study for history matching, uncertainty quantification and reservoir characterisation. Comput. Geosci. 50, 4–15 (2013)CrossRefGoogle Scholar
  12. 12.
    Audigane, P., Blunt, M.: Dual mesh method for upscaling in waterflood simulation. Transp. Porous Media 55(1), 71–89 (2004)CrossRefGoogle Scholar
  13. 13.
    Babaei, M., King, P.: A modified nested-gridding for upscaling-downscaling in reservoir simulation. Transp. Porous Media 93(3), 753–775 (2012)CrossRefGoogle Scholar
  14. 14.
    Babaei, M., King, P.: An upscaling-static-downscaling scheme for simulation of enhanced oil recovery processes. Transp. Porous Media 98(2), 465–484 (2013)CrossRefGoogle Scholar
  15. 15.
    Babuska, I., Caloz, G., Osborn, J: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994)CrossRefGoogle Scholar
  16. 16.
    Babuska, I., Osborn, J.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Num. Anal. 20(3), 510–536 (1983)CrossRefGoogle Scholar
  17. 17.
    Barker, J., Thibeau, S: A critical review of the use of pseudorelative permeabilities for upscaling. SPE Res. Engrg. 12(2), 138–143 (1997)CrossRefGoogle Scholar
  18. 18.
    Bergamashi, L., Mantica, S., Manzini, G: A mixed finite element-finite volume formulation of the black-oil model. SIAM J. Sci. Comput. 3(20), 970–997 (1998)CrossRefGoogle Scholar
  19. 19.
    Bonfigli, G., Jenny, P.: Recent developments in the multi-scale-finite-volume procedure. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Large-Scale Scientific Computing, Lecture Notes in Computer Science. doi: 10.1007/978-3-642-12535-5_13, vol. 5910, pp 124–131. Springer, Berlin / Heidelberg (2010)
  20. 20.
    Bush, L., Ginting, V., Presho, M.: Application of a conservative, generalized multiscale finite element method to flow models. J. Comput. Appl. Math. 260, 395–409 (2014)CrossRefGoogle Scholar
  21. 21.
    Castelletto, N., Hajibeygi, H., Tchelepi, H.: Hybrid Multiscale Formulation for Coupled Flow and Geomechanics. In: ECMOR XV – 15Th European Conference on the Mathematics of Oil Recovery. EAGE, Amsterdam, The Netherlands (2016)Google Scholar
  22. 22.
    Castelletto, N., Hajibeygi, H., Tchelepi, H.: Multiscale finite-element method for linear elastic geomechanics. J. Comput. Phys. 331, 337–356 (2017)CrossRefGoogle Scholar
  23. 23.
    Chen, T., Gerritsen, M.G., Durlofsky, L.J., Lambers, J.V.: Adaptive local-global VCMP methods for coarse-scale reservoir modeling. In: 2009 SPE Reservoir Simulation Symposium, 2-4 February, The Woodlands, Texas. SPE 118994-MS (2009)Google Scholar
  24. 24.
    Chen, T., Gerritsen, M. G., Lambers, J. V., Durlofsky, L.: Global variable compact multipoint methods for accurate upscaling with full-tensor effects. Comput. Geosci. 14(1), 65–81 (2010)CrossRefGoogle Scholar
  25. 25.
    Chen, Y., Durlofsky, L.: Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media 62, 157–182 (2006)CrossRefGoogle Scholar
  26. 26.
    Chen, Y., Durlofsky, L. J., Gerritsen, M., Wen, X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)CrossRefGoogle Scholar
  27. 27.
    Chen, Z.: Formulations and numerical methods of the black oil model in porous media. SIAM J. Numer. Anal. 38(2), 489–514 (2000)CrossRefGoogle Scholar
  28. 28.
    Chen, Z., Hou, T.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp. 72, 541–576 (2003)CrossRefGoogle Scholar
  29. 29.
    Christie, M.: Upscaling for reservoir simulation. J. Pet. Tech. 48(11), 1004–1010 (1996)CrossRefGoogle Scholar
  30. 30.
    Chung, E. T., Efendiev, Y., Li, G: An adaptive GMsFEM for high-contrast flow problems. J. Comput. Phys. 273, 54–76 (2014)CrossRefGoogle Scholar
  31. 31.
    Cortinovis, D., Jenny, P: Iterative Galerkin-enriched multiscale finite-volume method. J. Comput. Phys. 277, 248–267 (2014)CrossRefGoogle Scholar
  32. 32.
    Cusini, M., Lukyanov, A. A., Natvig, J. R., Hajibeygi, H: Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media. J. Comput. Phys. 299, 472–486 (2015)CrossRefGoogle Scholar
  33. 33.
    DeBaun, D., Byer, T., Childs, P., Chen, J., Saaf, F., Wells, M., Liu, J., Cao, H., Pianelo, L., Tilakraj, V., Crumpton, P., Walsh, D., Yardumian, H., Zorzynski, R., Lim, K.T., Schrader, M., Zapata, V., Nolen, J., Tchelepi, H.A.: An extensible architecture for next generation scalable parallel reservoir simulation. In: SPE Reservoir Simulation Symposium, 31 January–2 Febuary, The Woodlands, Texas, USA. SPE 93274-MS (2005)Google Scholar
  34. 34.
    Dolean, V., Jolivet, P., Nataf, F., Spillane, N., Xiang, H: Two-level domain decomposition methods for highly heterogeneous Darcy equations. Connections with multiscale methods. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 69(4), 731–752 (2014)CrossRefGoogle Scholar
  35. 35.
    Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)CrossRefGoogle Scholar
  36. 36.
    Efendiev, Y., Galvis, J., Wu, X.: Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230(4), 937–955 (2011)CrossRefGoogle Scholar
  37. 37.
    Farmer, C.: Upscaling: a review. Int. J. Numer. Meth. Fluids 40(1–2), 63–78 (2002)CrossRefGoogle Scholar
  38. 38.
    Fjerstad, P.A., Dasie, W.J., Sikandar, A.S., Cao, H., Liu, J.: Next generation parallel computing for large-scale reservoir simulation. In: SPE International Improved Oil Recovery Conference in Asia Pacific, 5-6 December, Kuala Lumpur, Malaysia. SPE 97358-MS (2007)Google Scholar
  39. 39.
    Fossen, H., Hesthammer, J: Structural Geology of the Gullfaks Field. In: Coward, M. P., Johnson, H., Daltaban, T. (eds.) Structural Geology in Reservoir Characterization, 127, Geological Society Special Publication, pp 231–261 (1998)Google Scholar
  40. 40.
    Gautier, Y., Blunt, M. J., Christie, M.: Nested gridding and streamline-based simulation for fast reservoir performance prediction. Comput. Geosci. 3, 295–320 (1999)CrossRefGoogle Scholar
  41. 41.
    Gerritsen, M. G., Durlofsky, L.: Modeling fluid flow in oil reservoirs. Annual Rev. Fluid Mech. 37(1), 211–238 (2005)CrossRefGoogle Scholar
  42. 42.
    Hajibeygi, H., Bonfigli, G., Hesse, M. A., Jenny, P: Iterative multiscale finite-volume method. J. Comput. Phys. 227(19), 8604–8621 (2008)CrossRefGoogle Scholar
  43. 43.
    Hajibeygi, H., Deb, R., Jenny, P.: Multiscale finite volume method for non-conformal coarse grids arising from faulted porous media. In: SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 21–23 February 2011. SPE 142205-MS (2011)Google Scholar
  44. 44.
    Hajibeygi, H., Jenny, P.: Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media. J. Comput. Phys. 228(14), 5129–5147 (2009)CrossRefGoogle Scholar
  45. 45.
    Hajibeygi, H., Jenny, P.: Adaptive iterative multiscale finite volume method. J. Comput. Phys. 230(3), 628–643 (2011)CrossRefGoogle Scholar
  46. 46.
    Hajibeygi, H., Tchelepi, H.: Compositional multiscale finite-volume formulation. SPE J. 19(2), 316–326 (2014)CrossRefGoogle Scholar
  47. 47.
    Hesse, M. A., Mallison, B. T., Tchelepi, H.: Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations. Multiscale Model. Simul. 7(2), 934–962 (2008)CrossRefGoogle Scholar
  48. 48.
    Hilden, S. T., Møyner, O., Lie, K.A., Bao, K.: Multiscale simulation of polymer flooding with shear effects. Transp. Porous Media 113(1), 111–135 (2016)CrossRefGoogle Scholar
  49. 49.
    Hou, T. Y., Wu, X.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)CrossRefGoogle Scholar
  50. 50.
    Hughes, T., Feijoo, G., Mazzei, L., Quincy, J.: The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg 166, 3–24 (1998)CrossRefGoogle Scholar
  51. 51.
    Jenny, P., Lee, S. H., Tchelepi, H.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)CrossRefGoogle Scholar
  52. 52.
    Jenny, P., Lee, S. H., Tchelepi, H.: Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Model. Simul. 3(1), 50–64 (2004)CrossRefGoogle Scholar
  53. 53.
    Jenny, P., Lee, S. H., Tchelepi, H.: Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J. Comput. Phys. 217(2), 627–641 (2006)CrossRefGoogle Scholar
  54. 54.
    Jenny, P., Lunati, I: Modeling complex wells with the multi-scale finite-volume method. J. Comput. Phys. 228(3), 687–702 (2009)CrossRefGoogle Scholar
  55. 55.
    Juanes, R., Dub, F.: A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms. Comput. Geosci. 12(3), 273–295 (2008)CrossRefGoogle Scholar
  56. 56.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comp. 20(1), 359–392 (1998)CrossRefGoogle Scholar
  57. 57.
    Kippe, V., Aarnes, J. E., Lie, K.: A comparison of multiscale methods for elliptic problems in porous media flow. Comput. Geosci. 12(3), 377–398 (2008)CrossRefGoogle Scholar
  58. 58.
    Kozlova, A., Li, Z., Natvig, J.R., Watanabe, S., Zhou, Y., Bratvedt, K., Lee, S.H.: A real-field multiscale black-oil reservoir simulator. In: SPE Reservoir Simulation Symposium, 23-25 February, Houston, Texas, USA. SPE 173226-MS (2015)Google Scholar
  59. 59.
    Kozlova, A., Walsh, D., Chittireddy, S., Li, Z., Natvig, J., Watanabe, S., Bratvedt, K.: A Hybrid Approach to Parallel Multiscale Reservoir Simulator. EAGE, Amsterdam, The Netherlands (2016)CrossRefGoogle Scholar
  60. 60.
    Krogstad, S.: A sparse basis POD for model reduction of multiphase compressible flow. In: 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 21-23 February 2011. SPE 141973-MS (2011)Google Scholar
  61. 61.
    Krogstad, S., Lie, K.A., Møyner, O., Nilsen, H.M., Raynaud, X., Skaflestad, B.: MRST-AD – an open-source framework for rapid prototyping and evaluation of reservoir simulation problems. In: SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas. SPE 173317-MS (2015)Google Scholar
  62. 62.
    Krogstad, S., Lie, K.A., Nilsen, H.M., Natvig, J.R., Skaflestad, B., Aarnes, J.E.: A multiscale mixed finite-element solver for three-phase black-oil flow. In: SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 2–4 February 2009. SPE 118993-MS (2009)Google Scholar
  63. 63.
    Krogstad, S., Lie, K. A., Skaflestad, B: Mixed Multiscale Methods for Compressible Flow. In: Proceedings of ECMOR XIII–13Th European Conference on the Mathematics of Oil Recovery EAGE. Biarritz, France (2012)Google Scholar
  64. 64.
    Larson, M.G., Målqvist, A.: Goal oriented adaptivity for coupled flow and transport problems with applications in oil reservoir simulations. Comp. Meth. Appl. Mech. Eng. 196(37–40), 3546–3561 (2007). Special Issue Honoring the 80th Birthday of Professor Ivo BabuskaCrossRefGoogle Scholar
  65. 65.
    Lee, S. H., Efendiev, Y., Tchelepi, H.: Hybrid upwind discretization of nonlinear two-phase flow with gravity. Adv. Water Resour. 82, 27–38 (2015)CrossRefGoogle Scholar
  66. 66.
    Lee, S. H., Wolfsteiner, C., Tchelepi, H.: Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three phase flow with gravity. Comput. Geosci. 12(3), 351–366 (2008)CrossRefGoogle Scholar
  67. 67.
    Li, B., Tchelepi, H.: Unconditionally convergent nonlinear solver for multiphase flow in porous media under viscous force, buoyancy, and capillarity. Energy Procedia 59, 404–411 (2014)CrossRefGoogle Scholar
  68. 68.
    Lie, K.A.: An Introduction to Reservoir Simulation Using MATLAB: User guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTEF ICT. http://www.sintef.no/Projectweb/MRST/publications, 3nd edn. (2016)
  69. 69.
    Lie, K.A., Møyner, O., Natvig, J.R.: A Feature-Enriched Multiscale Method for Simulating Complex Geomodels. In: SPE Reservoir Simulation Conference, 20–22 February 2017, Montgomery, Texas, USA. SPE 182701-MS (2017)Google Scholar
  70. 70.
    Lie, K. A., Natvig, J. R., Krogstad, S., Yang, Y., Wu, X.: Grid adaptation for the dirichlet–Neumann representation method and the multiscale mixed finite-element method. Comput. Geosci. 18(3), 357–372 (2014)CrossRefGoogle Scholar
  71. 71.
    Lunati, I., Jenny, P: Multiscale finite-volume method for compressible multiphase flow in porous media. J. Comput. Phys. 216(2), 616–636 (2006a)Google Scholar
  72. 72.
    Lunati, I., Jenny, P: A Multiscale Finite-Volume Method for Three-Phase Flow Influenced by Gravity. In: Binning, P., Engesgaard, P., Dahle, H., Pinder, G., Gray, W (eds.) Proceedings of the XVI International Conference on Computational Methods in Water Resources. Copenhagen, Denmark (2006b)Google Scholar
  73. 73.
    Lunati, I., Jenny, P.: Treating highly anisotropic subsurface flow with the multiscale finite-volume method. Multiscale Model. Simul. 6(1), 308–318 (2007)CrossRefGoogle Scholar
  74. 74.
    Lunati, I., Lee, S.: An operator formulation of the multiscale finite-volume method with correction function. Multiscale Model. Simul. 8(1), 96–109 (2009)CrossRefGoogle Scholar
  75. 75.
    Lunati, I., Tyagi, M., Lee, S.: An iterative multiscale finite volume algorithm converging to the exact solution. J. Comput. Phys. 230(5), 1849–1864 (2011)CrossRefGoogle Scholar
  76. 76.
    Magri, V. A.: Pré-Condicionador Multiescala AlgéBrico Aplicado à Simulação De Reservatórios De Petróleo. Master’s thesis. Universidade Federal de Santa Catarina - UFSC (2015)Google Scholar
  77. 77.
    Manea, A., Hajibeygi, H., Vassilevski, P., Tchelepi, H.: Enriched Algebraic Multiscale Linear Solver. In: ECMOR XV – 15Th European Conference on the Mathematics of Oil Recovery. EAGE, Amsterdam, The Netherlands (2016)Google Scholar
  78. 78.
    Manea, A.M., Sewall, J., Tchelepi, H.A.: Parallel Multiscale Linear Solver for Highly Detailed Reservoir Models. In: SPE Reservoir Simulation Symposium, 23-25 February, Houston, Texas, USA. SPE 173259-MS (2015)Google Scholar
  79. 79.
    Montaron, B.A., Bradley, D.C., Cooke, A., Prouvost, L.P., Raffn, A.G., Vidal, A., Wilt, M.: Shapes of flood fronts in heterogeneous reservoirs and oil recovery strategies. In: SPE/EAGE Reservoir Characterization and Simulation Conference, 28-31 October, Abu Dhabi, UAE. SPE-111147-MS (2007)Google Scholar
  80. 80.
    Møyner, O.: Multiscale Finite-Volume Methods on Unstructured Grids Master’s Thesis. Norwegian University of Science and Technology, Trondheim (2012)Google Scholar
  81. 81.
    Møyner, O.: Construction of multiscale preconditioners on stratigraphic grids. In: ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014. EAGE (2014)Google Scholar
  82. 82.
    Møyner, O.: Next Generation Multiscale Methods for Reservoir Simulation. Ph.D. thesis, Norwegian University of Science and Technology (2016a)Google Scholar
  83. 83.
    Møyner, O.: Nonlinear Solver for Three-Phase Transport Problems Based on Approximate Trust Regions. In: ECMOR XV – 15Th European Conference on the Mathematics of Oil Recovery. EAGE, Amsterdam, The Netherlands (2016b)Google Scholar
  84. 84.
    Møyner, O., Lie, K.A.: The multiscale finite volume method on unstructured grids. In: SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 18–20 February 2013. SPE 163649-MS (2013)Google Scholar
  85. 85.
    Møyner, O., Lie, K.A: The multiscale finite-volume method on stratigraphic grids. SPE J. 19(5), 816–831 (2014a)Google Scholar
  86. 86.
    Møyner, O., Lie, K.A: A multiscale two-point flux-approximation method. J. Comput. Phys. 275, 273–293 (2014b)Google Scholar
  87. 87.
    Møyner, O., Lie, K.A.: A multiscale method based on restriction-smoothed basis functions suitable for general grids in high contrast media. In: SPE Reservoir Simulation Symposium held in Houston, Texas, USA, 23–25 February 2015. SPE 173265-MS (2015)Google Scholar
  88. 88.
    Møyner, O., Lie, K.A: A multiscale restriction-smoothed basis method for compressible black-oil models. SPE J. 21(6), 2079–2096 (2016a)Google Scholar
  89. 89.
    Møyner, O., Lie, K.A: A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids. J. Comput. Phys. 304, 46–71 (2016b)Google Scholar
  90. 90.
    Møyner, O., Tchelepi, H.A.: A Multiscale Restriction-Smoothed Basis Method for Compositional Models. In: SPE Reservoir Simulation Conference, 20–22 February 2017, Montgomery, Texas, USA. SPE 182679-MS (2017)Google Scholar
  91. 91.
    Natvig, J.R., Skaflestad, B., Bratvedt, F., Bratvedt, K., Lie, K.A., Laptev, V., Khataniar, S.K.: Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs. In: SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 2–4 February 2009. SPE 119132-MS (2009)Google Scholar
  92. 92.
    Natvig, J. R., Skaflestad, B., Bratvedt, F., Bratvedt, K., Lie, K. A., Laptev, V., Khataniar, S.: Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs. SPE J. 16(4), 880–888 (2011)CrossRefGoogle Scholar
  93. 93.
    Nordbotten, J. M., Bjørstad, P.E.: On the relationship between the multiscale finite-volume method and domain decomposition preconditioners. Comput. Geosci. 12(3), 367–376 (2008)CrossRefGoogle Scholar
  94. 94.
    Nordbotten, J. M., Keilegavlen, E., Sandvin, A. Petrova, R. (ed.): Mass Conservative Domain Decomposition for Porous Media Flow. Intech Europe, Rijeka, Croatia (2012)Google Scholar
  95. 95.
    Pal, M., Lamine, S., Lie, K. A., Krogstad, S.: Multiscale Method for Two and Three-Phase Flow Simulation in Subsurface Petroleum Reservoirs. In: Proceedings of ECMOR XIII–13Th European Conference on the Mathematics of Oil Recovery. EAGE, Biarritz, France (2012)Google Scholar
  96. 96.
    Pal, M., Lamine, S., Lie, K. A., Krogstad, S: Validation of the multiscale mixed finite-element method. Int. J. Numer. Meth. Fluids 77(4), 206–223 (2015)CrossRefGoogle Scholar
  97. 97.
    Parramore, E., Edwards, M. G., Pal, M., Lamine, S: Multiscale finite-volume CVD-MPFA formulations on structured and unstructured grids. Multiscale Model. Simul. 14(2), 559–594 (2016)CrossRefGoogle Scholar
  98. 98.
    Renard, P., De Marsily, G: Calculating equivalent permeability: a review. Adv. Water Resour. 20(5), 253–278 (1997)CrossRefGoogle Scholar
  99. 99.
    Sandve, T. H., Berre, I., Keilegavlen, E., Nordbotten, J.: Multiscale Simulation of Flow and Heat Transport in Fractured Geothermal Reservoirs: Inexact Solvers and Improved Transport Upscaling. Stanford, California, USA (2013)Google Scholar
  100. 100.
    Shah, S., Møyner, O., Tene, M., Lie, K.A., Hajibeygi, H.: The multiscale restriction smoothed basis method for fractured porous media. J. Comput. Phys. 318, 36–57 (2016)CrossRefGoogle Scholar
  101. 101.
    Skaflestad, B., Krogstad, S: Multiscale/Mimetic Pressure Solvers with Near-Well Grid Adaption. In: Proceedings of ECMOR XI–11Th European Conference on the Mathematics of Oil Recovery, vol. A36. EAGE, Bergen, Norway (2008)Google Scholar
  102. 102.
    Smith, B. F., Bjørstad, P.E., Gropp, W.D: Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996)Google Scholar
  103. 103.
    Spillette, A.G., Hillestad, J.G., Stone, H.L.: A high-stability sequential solution approach to reservoir simulation. In: Fall Meeting of the Society of Petroleum Engineers of AIME, 30 September-3 October, Las Vegas, Nevada. SPE-4542-MS (1973)Google Scholar
  104. 104.
    Tchelepi, H. A., Jenny, P., Lee, S. H., Wolfsteiner, C.: Adaptive multiscale finite volume framework for reservoir simulation. SPE J. 12, 188–195 (2007)CrossRefGoogle Scholar
  105. 105.
    Tene, M., Kobaisi, M. S. A., Hajibeygi, H.: Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS). J. Comput. Phys. 321, 819–845 (2016a)Google Scholar
  106. 106.
    Tene, M., Kobaisi, M. S. A., Hajibeygi, H.: Multiscale Projection-Based Embedded Discrete Fracture Modeling Approach (F-AMS-PEDFM). In: ECMOR XV – 15Th European Conference on the Mathematics of Oil Recovery. EAGE, Amsterdam, The Netherlands (2016b)Google Scholar
  107. 107.
    Wang, Y., Hajibeygi, H., Tchelepi, H.: Algebraic Multiscale Linear Solver for Heterogeneous Elliptic Problems. In: ECMOR XIII - 13Th European Conference on the Mathematics of Oil Recovery. EAGE, Biarritz, France (2012)Google Scholar
  108. 108.
    Wang, Y., Hajibeygi, H., Tchelepi, H.: Algebraic multiscale solver for flow in heterogeneous porous media. J. Comput. Phys. 259, 284–303 (2014)CrossRefGoogle Scholar
  109. 109.
    Wang, Y., Hajibeygi, H., Tchelepi, H.: Monotone multiscale finite volume method. Comput. Geosci. 20(3), 509–524 (2016)CrossRefGoogle Scholar
  110. 110.
    Watanabe, S., Li, Z., Bratvedt, K., Lee, S.: A Stable Multi-Phase Nonlinear Transport Solver with Hybrid Upwind Discretization in Multiscale Reservoir Simulators. In: ECMOR XV – 15Th European Conference on the Mathematics of Oil Recovery. EAGE, Amsterdam, The Netherlands (2016)Google Scholar
  111. 111.
    Wolfsteiner, C., Lee, S. H., Tchelepi, H.: Well modeling in the multiscale finite volume method for subsurface flow simulation. Multiscale Model. Simul. 5(3), 900–917 (2006)CrossRefGoogle Scholar
  112. 112.
    Zhou, H., Tchelepi, H.: Operator-based multiscale method for compressible flow. SPE J. 13(2), 267–273 (2008)CrossRefGoogle Scholar
  113. 113.
    Zhou, H., Tchelepi, H.: Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models. SPE J. 17(2), 523–539 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • K.-A. Lie
    • 1
  • O. Møyner
    • 1
    Email author
  • J. R. Natvig
    • 2
  • A. Kozlova
    • 3
  • K. Bratvedt
    • 3
  • S. Watanabe
    • 3
  • Z. Li
    • 3
  1. 1.Mathematics and CyberneticsSINTEF DigitalOsloNorway
  2. 2.SchlumbergerAskerNorway
  3. 3.SchlumbergerHoustonUSA

Personalised recommendations