Computational Geosciences

, Volume 21, Issue 3, pp 411–426 | Cite as

A least squares approach for efficient and reliable short-term versus long-term optimization

  • Lasse Hjuler Christiansen
  • Andrea Capolei
  • John Bagterp JørgensenEmail author
Original Paper


The uncertainties related to long-term forecasts of oil prices impose significant financial risk on ventures of oil production. To minimize risk, oil companies are inclined to maximize profit over short-term horizons ranging from months to a few years. In contrast, conventional production optimization maximizes long-term profits over horizons that span more than a decade. To address this challenge, the oil literature has introduced short-term versus long-term optimization. Ideally, this problem is solved by a posteriori multi-objective optimization methods that generate an approximation to the Pareto front of optimal short-term and long-term trade-offs. However, such methods rely on a large number of reservoir simulations and scale poorly with the number of objectives subject to optimization. Consequently, the large-scale nature of production optimization severely limits applications to real-life scenarios. More practical alternatives include ad hoc hierarchical switching schemes. As a drawback, such methods lack robustness due to unclear convergence properties and do not naturally generalize to cases of more than two objectives. Also, as this paper shows, the hierarchical formulation may skew the balance between the objectives, leaving an unfulfilled potential to increase profits. To promote efficient and reliable short-term versus long-term optimization, this paper introduces a natural way to characterize desirable Pareto points and proposes a novel least squares (LS) method. Unlike hierarchical approaches, the method is guaranteed to converge to a Pareto optimal point. Also, the LS method is designed to properly balance multiple objectives, independently of Pareto front’s shape. As such, the method poses a practical alternative to a posteriori methods in situations where the frontier is intractable to generate.


Short-term versus long-term optimization Multi-objective optimization Risk management Oil production Optimal control 

Mathematics Subject Classifications (2010)

90C30 49M37 49J20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aziz, K., Settari, A.: Petroleum reservoir simulation. Applied Science Publishers London, 476 (1979)Google Scholar
  2. 2.
    Bailey, W.J., Couet, B., Wilkinson, D.: Framework for field optimization to maximize asset value. SPE Reserv. Eval. Eng. 8, 7–25 (2005)CrossRefGoogle Scholar
  3. 3.
    Biegler, L.T.: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 8, 243–248 (1984)CrossRefGoogle Scholar
  4. 4.
    Biegler, L.T.: A survey on sensitivity-based nonlinear model predictive control. In: 10th IFAC International Symposium on Dynamics and Control of Process Systems. Mumbaim, India, pp. 499–510 (2013)Google Scholar
  5. 5.
    Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems In: Proceedings 9th IFAC World Congress Budapest. Pergamon Press, pp. 243–274 (1984)Google Scholar
  6. 6.
    Brouwer, D.R., Jansen, J.D.: Dynamic optimization of waterflooding with smart wells using optimal control theory. SPE J. 9(4), 391–402 (2004)CrossRefGoogle Scholar
  7. 7.
    Capolei, A., Jørgensen, J. B.: Solution of constrained optimal control problems using multiple shooting and esdirk methods. In: 2012 American Control Conference, pp. 295–300 (2012)Google Scholar
  8. 8.
    Capolei, A., Suwartadi, E., Foss, B., Jørgensen, J. B.: A meanvariance objective for robust production optimization in uncertain geological scenarios. J. Pet. Sci. Eng. 125, 23–37 (2015)CrossRefGoogle Scholar
  9. 9.
    Chen, C., Li, G., Reynolds, A.: Robust constrained optimization of short-and long-term net present value for closed-loop reservoir management. SPE J. 17(3), 849–864 (2012)CrossRefGoogle Scholar
  10. 10.
    Chen, Z.: Reservoir simulation: Mathematical techniques in oil recovery. SIAM, Philadelphia, USA (2007)CrossRefGoogle Scholar
  11. 11.
    Christiansen, L.H., Capolei, A., Jørgensen, J.B.: Time-explicit methods for joint economical and geological risk mitigation in production optimization. Journal of Petroleum Science and Engineering, 2016. doi: 10.1016/j.petrol.2016.04.018
  12. 12.
    Codas, A., Foss, B., Camponogara, E.: Output-constraint handling and parallelization for oil-reservoir control optimization by means of multiple shooting. SPE J. 20(4), 856–871 (2015)CrossRefGoogle Scholar
  13. 13.
    Fonseca, R.M., Leeuwenburgh, O., Van den Hof, P.M.J., Jansen, J.D.: Ensemble-based hierarchical multi-objective production optimization of smart wells. Comput. Geosci. 18(3), 449–461 (2014). ISSN 1573-1499Google Scholar
  14. 14.
    Fonseca, R.M., Reynolds, A.C., Jansen, J.D.: Generation of a pareto front for a bi-objective water flooding optimization problem using approximate ensemble gradients. J. Pet. Sci. Eng. 147, 249–260 (2016)CrossRefGoogle Scholar
  15. 15.
    Fonseca, R.M., Stordal, A.S., Leeuwenburgh, O., Van den Hof, P.M.J., Jansen, J.D.: Robust ensemble-based multi-objective optimization. In: ECMOR XIV-14th European conference on the mathematics of oil recovery, 2014Google Scholar
  16. 16.
    Isebor, O.J., Durlofsky, L.J.: Biobjective optimization for general oil field development. J. Pet. Sci. Eng. 119, 123 – 138 (2014). ISSN 0920-4105CrossRefGoogle Scholar
  17. 17.
    Jansen, J.D., Bosgra, O.H., Van den Hof, P.M.J.: Model-based control of multiphase flow in subsurface oil reservoirs. J. Process Control 18(9), 846–855 (2008)Google Scholar
  18. 18.
    Jørgensen, J. B.: Adjoint sensitivity results for predictive control, state- and parameter-estimation with nonlinear models. In: Proceedings of the European Control Conference 2007. Kos, Greece, pp. 3649?3656 (2007)Google Scholar
  19. 19.
    Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)CrossRefGoogle Scholar
  20. 20.
    Liu, X., Reynolds, A.C.: Gradient-based multi-objective optimization with applications to waterflooding optimization. Computational Geosciences, pp. 1–17, 2015. doi: 10.1007/s10596-015-9523-6
  21. 21.
    Liu, X., Reynolds, A.C.: Pareto optimal solutions for minimizing risk and maximizing expected value of life-cycle npv of production under nonlinear constraints. In: SPE Reservoir Simulation Symposium, pp. 23–25, Texas, USA, 2015. doi: 10.2118/173274-MS
  22. 22.
    Liu, X., Reynolds, A.C.: A multiobjective steepest descent method with applications to optimal well control. Comput. Geosci. 20(2), 355–374 (2016). ISSN 1573-1499CrossRefGoogle Scholar
  23. 23.
    Miettinen, K.: Nonlinear multi-objective optimization. Kluwer Academic Publishers, Massachusetts, USA (1999)Google Scholar
  24. 24.
    Nocedal, J., Wright, J.S.: Numerical optimization. Springer (2006)Google Scholar
  25. 25.
    Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: A review. Comput. Geosci. 15(1), 185–221 (2011). doi: 10.1007/s10596-010-9194-2 CrossRefGoogle Scholar
  26. 26.
    Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press, Cambridge (2008). doi: 10.1017/CBO9780511535642 CrossRefGoogle Scholar
  27. 27.
    Pareto, V.: Manual of political economy. The MacMillian Press Ltd (1971)Google Scholar
  28. 28.
    Pavlikov, K., Uryasev, S.: Cvar norm and applications in optimization. Optim. Lett. 8(7), 1999–2020 (2014)CrossRefGoogle Scholar
  29. 29.
    Sarma, P., Aziz, K., Durlofsky, L.J.: Implementation of adjoint solution for optimal control of smart wells. In: Proceedings of SPE Reservoir Simulation Symposium, pp. 295–300 (2005)Google Scholar
  30. 30.
    Siraj, M.M., Van den Hof, P.M.J., Jansen, J.D.: Handling risk of uncertainty in model-based production optimization: a robust hierarchical approach. 2nd IFAC Workshop Autom. Control Offshore Oil Gas Prod. Florianpolis, Brazil 48(6), 248–253 (2015)Google Scholar
  31. 31.
    Siraj, M.M., Van den Hof, P.M.J., Jansen, J.D.: Model and economic uncertainties in balancing short-term and long-term objectives in water-flooding optimization. In: 2015 SPE Reservoir Simulation Symposium, 2015Google Scholar
  32. 32.
    Suwartadi, E., Krogstad, S., Foss, B.: Nonlinear output constraints handling for production optimization of oil reservoirs. Comput. Geosci. 16, 499–517 (2012)CrossRefGoogle Scholar
  33. 33.
    Valladao, D.M., Torrado, R.R., Flach, B., Embid, S.: On the stochastic response surface methodology for the determination of the development plan of an oil & gas field. In: SPE Middle East Intelligent Energy Conference and Exhibition, pp. 28–30, Manama, Bahrain, 2013. doi: 10.2118/173274-MS
  34. 34.
    Van Essen, G., Van den Hof, P.M.J., Jansen, J.D.: Hierarchical long-term and short-term production optimization. SPE J. 16(1), 191–199 (2011)Google Scholar
  35. 35.
    Van Essen, G., Zandvliet, M., Van den Hof, P.M.J., Bosgra, O., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(1), 202–210 (2009)Google Scholar
  36. 36.
    Völcker, C.J., Jørgensen, B., Thomsen, P.G., Stenby, E.H.: Simulation of subsurface two-phase flow in an oil reservoir. In: European Control Conference 2009, pp. 1221–1226 (2009)Google Scholar
  37. 37.
    Völcker, C., Jørgensen, J.B., Stenby, E.H.: Oil reservoir production optimization using optimal control. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 7937–7943. IEEE (2011)Google Scholar
  38. 38.
    Waltz, F.: An engineering approach: hierarchical optimization criteria. IEEE Trans. Autom. Control 12, 179–180 (1967)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Lasse Hjuler Christiansen
    • 1
  • Andrea Capolei
    • 1
  • John Bagterp Jørgensen
    • 1
    Email author
  1. 1.Department of Applied Mathematics and Computer Science & Center for Energy Resources EngineeringTechnical University of Denmark (DTU)Kongens LyngbyDenmark

Personalised recommendations