Computational Geosciences

, Volume 21, Issue 1, pp 47–74

# A unified formulation for generalized oilfield development optimization

• Shiva Navabi
• Behnam Jafarpour
Original Paper

## Abstract

Oilfield development involves several key decisions, including the number, type (injection/production), location, drilling schedule, and operating control trajectories of the wells. Without considering the coupling between these decision variables, any optimization problem formulation is bound to find suboptimal solutions. This paper presents a unified formulation for oilfield development optimization that seeks to simultaneously optimize these decision variables. We show that the source/sink term of the governing multiphase flow equations includes all the above decision variables. This insight leads to a novel and unified formulation of the field development optimization problem that considers the source/sink term in reservoir simulation equations as optimization decision variables. Therefore, a single optimization problem is formulated to simultaneously search for optimal decision variables by determining the complete dynamic form of the source/sink terms. The optimization objective function is the project net present value (NPV), which involves discounted revenue from oil production, operating costs (e.g. water injection and recycling), and capital costs (e.g., cost of drilling wells). A major difficulty after formulating the generalized field development optimization problem is finding an efficient solution approach. Since the total number of cells in a reservoir model far exceeds the number of cells that are intersected by wells, the source/sink terms tend to be sparse. In fact, the drilling cost in the NPV objective function serves as a sparsity-promoting penalty to minimize the number of wells while maximizing the NPV. Inspired by this insight, we solve the optimization problem using an efficient gradient-based method based on recent algorithmic developments in sparse reconstruction literature. The gradients of the NPV function with respect to the source/sink terms is readily computed using well-established adjoint methods. Numerical experiments are presented to evaluate the feasibility and performance of the generalized field development formulation for simultaneous optimization of the number, location, type, controls, and drilling schedule of the wells.

## Keywords

Field development optimization Well placement Well control optimization Drilling schedule Sparsity-promoting solution

## References

1. 1.
Almeida, L.F., Tupac, Y.J., Pacheco, M.A.C., Vellasco, M.M.B.R., Lazo, J.G.L., et al.: Evolutionary optimization of smart-wells control under technical uncertainties. In: Latin American & Caribbean Petroleum Engineering Conference, Society of Petroleum Engineers (2007)Google Scholar
2. 2.
Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Foundations and Trends$${\circledR }$$, in Machine Learning 4(1), 1–106 (2012)
3. 3.
Bangerth, W., Klie, H., Wheeler, M., Stoffa, P., Sen, M.: On optimization algorithms for the reservoir oil well placement problem. Comput. Geosci. 10(3), 303–319 (2006)
4. 4.
Baraniuk, R.G.: Compressive sensing. IEEE Signal Process. Mag. 24(4) (2007)Google Scholar
5. 5.
Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)
6. 6.
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)
7. 7.
Beckner, B., Song, X.: Field development planning using simulated annealing: Optimal economic well scheduling and placement. In: Society of Petroleum Engineers. Annual Technical Conference, pp 209–221 (1995)Google Scholar
8. 8.
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)Google Scholar
9. 9.
Brouwer, D.R.: Dynamic water flood optimization with smart wells using optimal control theory. Delft University of Technology (2004)Google Scholar
10. 10.
Bruck, R.E.: On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61(1), 159–164 (1977)
11. 11.
Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)
12. 12.
Centilmen, B., Ertekin, T., Grader, A.: Applications of neural networks in multiwell field development. In: SPE Annual Technical Conference (1999)Google Scholar
13. 13.
Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Mag. 14(10), 707–710 (2007)
14. 14.
Chartrand, R., Yin, W: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2008. ICASSP 2008, pp 3869–3872. IEEE (2008)Google Scholar
15. 15.
Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp 185–212. Springer (2011)Google Scholar
16. 16.
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Modeling & Simulation 4(4), 1168–1200 (2005)
17. 17.
Dai, Y.H., Liao, L.Z.: R-linear convergence of the barzilai and borwein gradient method. IMA J. Numer. Anal. 22(1), 1–10 (2002)
18. 18.
Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)
19. 19.
Ding, S., Jiang, H., Li, J., Tang, G.: Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method. Comput. Geosci. 18(5), 747–762 (2014)
20. 20.
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
21. 21.
Echeverría Ciaurri, D., Isebor, O.J., Durlofsky, L.J.: Application of derivative-free methodologies to generally constrained oil production optimization problems. Procedia Comput. Sci. 1(1), 1301–1310 (2010)
22. 22.
Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco, M.A.C., Vellasco, M.M.B.R., et al.: Well placement optimization using a genetic algorithm with nonlinear constraints. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2009)Google Scholar
23. 23.
Fletcher, R.: The Barzilai Borwein method-steepest descent resurgent. In: Report in the International Workshop on Optimization and Control with Applications. Erice, Italy (2001)Google Scholar
24. 24.
Forouzanfar, F., Reynolds, A.: Joint optimization of number of wells, well locations and controls using a gradient-based algorithm. Chem. Eng. Res. Des. (2013)Google Scholar
25. 25.
Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing. CAAM TR07-07, Rice University (2007)Google Scholar
26. 26.
Humphries, T.D., Haynes, R.D.: Joint optimization of well placement and control for nonconventional well types. arxiv preprint arxiv:14094369 (2014)
27. 27.
Humphries, T.D., Haynes, R.D., James, L.A.: Simultaneous and sequential approaches to joint optimization of well placement and control. Comput. Geosci. 1–16 (2013)Google Scholar
28. 28.
Humphries, T.D., Haynes, R.D., James, L.A.: Simultaneous and sequential approaches to joint optimization of well placement and control. Comput. Geosci. 18(3-4), 433–448 (2014)
29. 29.
Isebor, O.J., Durlofsky, L.J., Ciaurri, D.E.: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls. Comput. Geosci., pp. 1–20 (2013)Google Scholar
30. 30.
Isebor, O.J., Durlofsky, L.J., Ciaurri, D.E.: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls. Comput. Geosci. 18(3-4), 463–482 (2014)
31. 31.
Jansen, J.D.: A systems description of flow through porous media. Springer (2013)Google Scholar
32. 32.
Li, L., Jafarpour, B.: A variable-control well placement optimization for improved reservoir development. Comput. Geosci. 16(4), 871–889 (2012)
33. 33.
Li, L., Jafarpour, B., Mohammad-Khaninezhad, M.R.: A simultaneous perturbation stochastic approximation algorithm for coupled well placement and control optimization under geologic uncertainty. Comput. Geosci. 17(1), 167–188 (2013)
34. 34.
Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)
35. 35.
Luenberger, D.G., Ye, Y.: Linear and nonlinear programming, vol. 116. Springer (2008)Google Scholar
36. 36.
Montes, G., Bartolome, P., Udias, A.L., et al.: The use of genetic algorithms in well placement optimization. In: SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers (2001)Google Scholar
37. 37.
Navabi, S., Khaninezhad, R., Jafarpour, B.: A generalized formulation for oilfield development optimization (2015)Google Scholar
38. 38.
Nesterov, Y., et al.: Gradient Methods for Minimizing Composite Objective Function. Tech. rep., UCL (2007)Google Scholar
39. 39.
Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: A review. Comput. Geosci. 15(1), 185–221 (2011)
40. 40.
Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press (2008)Google Scholar
41. 41.
Onwunalu, J.E., Durlofsky, L.J.: Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput. Geosci. 14(1), 183–198 (2010)
42. 42.
Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)Google Scholar
43. 43.
Parikh, N., Boyd, S.P., et al.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)
44. 44.
Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)
45. 45.
Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13(3), 321–326 (1993)
46. 46.
Saad, Y., Van Der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123(1), 1–33 (2000)
47. 47.
Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10(1), 3–36 (2006)
48. 48.
Shirangi, M.G., Durlofsky, L.J., et al.: Closed-loop field development under uncertainty by use of optimization with sample validation. SPE J. (2015)Google Scholar
49. 49.
Shu, T., Krunz, M., Vrudhula, S.: Joint optimization of transmit power-time and bit energy efficiency in cdma wireless sensor networks. IEEE Trans. Wirel. Commun. 5(11), 3109–3118 (2006)
50. 50.
Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)
51. 51.
Spall, J.C., Hill, S.D., Stark, D.R.: Theoretical framework for comparing several stochastic optimization approaches. In: Probabilistic and Randomized Methods for Design under Uncertainty, pp 99–117. Springer (2006)Google Scholar
52. 52.
Turlach, B.A., Venables, W.N., Wright, S.J.: Simultaneous variable selection. Technometrics 47(3), 349–363 (2005)
53. 53.
Van Essen, G., Van den Hof, P., Jansen, J.D., et al.: Hierarchical long-term and short-term production optimization. SPE J. 16(01), 191–199 (2011)
54. 54.
Vlemmix, S., Joosten, G.J., Brouwer, R., Jansen, J.D., et al.: Adjoint-based well trajectory optimization. In: EUROPEC/EAGE Conference and Exhibition. Society of Petroleum Engineers (2009)Google Scholar
55. 55.
Wang, C., Li, G., Reynolds, A.C., et al.: Optimal well placement for production optimization. In: Eastern Regional Meeting. Society of Petroleum Engineers (2007)Google Scholar
56. 56.
Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)
57. 57.
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat Methodol. 68(1), 49–67 (2006)
58. 58.
Zandvliet, M., Handels, M., van Essen, G., Brouwer, R., Jansen, J.D., et al.: Adjoint-based well-placement optimization under production constraints. SPE J. 13(04), 392–399 (2008)
59. 59.
Zandvliet, M.J.: Model-Based Lifecycle Optimization of Well Locations and Production Settings in Petroleum Reservoirs. Delft University of Technology, TU Delft (2008)Google Scholar
60. 60.
Zhang, K., Li, G., Reynolds, A.C., Yao, J., Zhang, L.: Optimal well placement using an adjoint gradient. J. Pet. Sci. Eng. 73(3), 220–226 (2010)
61. 61.
Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat., 3468–3497 (2009)Google Scholar

© Springer International Publishing Switzerland 2016

• Shiva Navabi
• 1