Advertisement

Computational Geosciences

, Volume 20, Issue 5, pp 1095–1107 | Cite as

Oxidation wave structure and oxygen breakthrough for air injection into light oil reservoirs

  • F. P. Santos
  • A. A. Mailybaev
  • D. Marchesin
Original Paper

Abstract

This paper combines analytical and numerical studies of light oil recovery by air injection. We investigate in detail the internal structure of oxidation fronts in two-phase flow in a porous medium, taking into account reaction, vaporization, and condensation of liquid fuel, with longitudinal heat conduction. Our solution shows that between regimes of total and partial oxygen consumption there is a change in the oxidation wave, which may have negative implications for oxygen breakthrough in light oil recovery process. In spite of the simplifications used to derive the analytical solution, the latter agrees with direct numerical simulations. Finally, based on our analytical solution, we provide a phase diagram to predict conditions for total or partial oxygen consumption in light oil recovery process.

Keywords

Porous medium Travelling wave Oxygen breakthrough Oxidation wave struture Light oil recovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abou-Kassem, J.H., Farouq Ali, S.M., Ferrer, J.: Appraisal of steamflood models. Rev. Tec Ing. 9, 45–58 (1986)Google Scholar
  2. 2.
    Adegbesan, K.O., Donnelly, J.K., Moore, R.G., Bennion, D.W.: Low-temperature oxidation kinetic parameters for in-situ combustion numerical simulation. SPE Reserv. Eng. 2, 573–582 (1987)CrossRefGoogle Scholar
  3. 3.
    Akkutlu, I.Y., Yortsos, Y.C.: The dynamics of in-situ combustion fronts in porous media. Combustion and Flame 134, 229–247 (2003)CrossRefGoogle Scholar
  4. 4.
    Akkutlu, I.Y., Yortsos, Y.C.: Steady-state propagation of in-situ combustion fronts with sequential reactions. In: SPE International Petroleum Conference in Mexico. Society of Petroleum Engineers (2004)Google Scholar
  5. 5.
    Alexander, J., Martin, W.L., Dew, J.: Factors affecting fuel availability and composition during in situ combustion. J. Petrol. Tech. 14(10), 1154–1164 (1962)CrossRefGoogle Scholar
  6. 6.
    Belgrave, J.D.M., Moore, R.G.: A model for improved analysis of in-situ combustion tube tests. J. Pet. Sci. Eng. 8(2), 75–88 (1992)CrossRefGoogle Scholar
  7. 7.
    Bruining, J., Mailybaev, A.A., Marchesin, D.: Filtration combustion in wet porous medium. SIAM J. Appl Math. 70, 1157–1177 (2009)CrossRefGoogle Scholar
  8. 8.
    Castanier, L.M., Brigham, W.E.: Modifying in-situ combustion with metallic additives. In Situ 21(1), 27–45 (1997)Google Scholar
  9. 9.
    Castanier, L.M., Brigham, W.E.: Upgrading of crude oil via in situ combustion. J. Pet. Sci. Eng. 39, 125–136 (2003)CrossRefGoogle Scholar
  10. 10.
    Chapiro, G., Mailybaev, A.A., de Souza, A.J., Marchesin, D., Bruining, J.: Asymptotic approximation of long-time solution for low-temperature filtration combustion. Comput. Geosci. 16(3), 799–808 (2012)CrossRefGoogle Scholar
  11. 11.
    Crookston, R., Culham, W., Chen, W.: A numerical simulation model for thermal recovery processes. Soc. Pet. Eng. J. 19(01), 37–58 (1979)CrossRefGoogle Scholar
  12. 12.
    Fassihi, M., Brigham, W., Ramey Jr., H.: Reaction kinetics of in-situ combustion Part 1-observations. Old SPE Journal 24(4), 399–407 (1984)Google Scholar
  13. 13.
    Freitag, N.P., Verkoczy, B.: Low-temperature oxidation of oils in terms of SARA fractions: why simple reaction models don’t work. J. Can. Pet. Technol. 44(3), 54–61 (2005)CrossRefGoogle Scholar
  14. 14.
    Germain, P., Geyelin, J.L.: Air injection into a light oil reservoir: the horse creek project. In: Middle East Oil Show and Conference, Bahrain (1997)Google Scholar
  15. 15.
    Gerritsen, M., Kovscek, A., Castanier, L., Nilsson, J., Younis, R., He, B.: Experimental investigation and high resolution simulator of in-situ combustion processes; 1. Simulator design and improved combustion with metallic additives. In: SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting (2004)Google Scholar
  16. 16.
    Greaves, M., Ren, S., Rathbone, R., Fishlock, T., Ireland, R.: Improved residual light oil recovery by air injection (LTO process). J. Can. Pet. Technol. 39(1) (2000)Google Scholar
  17. 17.
    Greaves, M., Young, T.J., El-Usta, S., Rathbone, R.R., Ren, S.R., Xia, T.X.: Air injection into light and medium heavy oil reservoirs: combustion tube studies on west of Shetlands Clair oil and light Australian oil. Chem. Eng. Res. Des. 78(5), 721–730 (2000)CrossRefGoogle Scholar
  18. 18.
    Gutierrez, D., Skoreyko, F., Moore, R., Mehta, S., Ursenbach, M.: The challenge of predicting field performance of air injection projects based on laboratory and numerical modelling. J. Can. Pet. Technol. 48 (4), 23–33 (2009)CrossRefGoogle Scholar
  19. 19.
    Hardy, W.C., Fletcher, P.B., Shepard, J.C., Dittman, E.W., Zadow, D.W.: In-situ combustion in a thin reservoir containing high-gravity oil. J. Pet. Technol. 24(2), 199–208 (1972)CrossRefGoogle Scholar
  20. 20.
    Khoshnevis, N., Mailybaev, A.A., Bruining, J., Marchesin, D.: Effects of water on light oil recovery by air injection. Fuel 137, 200–210 (2014)CrossRefGoogle Scholar
  21. 21.
    Khoshnevis, N., Mailybaev, A.A., Marchesin, D., Bruining, J.: Compositional effects in light oil recovery by air injection: vaporization vs. combustion. Journal of Porous Media 17, 937–952 (2014)CrossRefGoogle Scholar
  22. 22.
    Khoshnevis, N., Mailybaev, A.A., Marchesin, D., Bruining, J., Recovery of light oil by air injection at medium temperature Experiments. J. Pet. Sci. Eng. 133, 29–39 (2015)CrossRefGoogle Scholar
  23. 23.
    Khoshnevis Gargar, N., Mailybaev, A.A., Marchesin, D., Bruining, H.: Diffusive effects on recovery of light oil by medium temperature oxidation. Transp. Porous Media 105(1), 191–209 (2014)CrossRefGoogle Scholar
  24. 24.
    Kok, M.V., Karacan, C.O.: Behavior and effect of SARA fractions of oil during combustion. SPE Reserv. Eval. Eng. 3, 380–385 (2000)CrossRefGoogle Scholar
  25. 25.
    Levenspiel, O.: Chemical Reaction Engineering. Wiley (1999)Google Scholar
  26. 26.
    LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent problems. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
  27. 27.
    Lin, C.Y., Chen, W.H., Culham, W.E.: New kinetic models for thermal cracking of crude oils in in-situ combustion processes. SPE Reserv. Eng. 2, 54–66 (1987)CrossRefGoogle Scholar
  28. 28.
    Lin, C.Y., Chen, W.H., Lee, S.T., Culham, W.E.: Numerical simulation of combustion tube experiments and the associated kinetics of in-situ combustion processes. SPE J. 24, 657–666 (1984)CrossRefGoogle Scholar
  29. 29.
    Liu, H., Ni, Q.: Incomplete Jacobian Newton method for nonlinear equations. Comput. Math. Appl. 56 (1), 218–227 (2008)CrossRefGoogle Scholar
  30. 30.
    Mailybaev, A.A., Bruining, J., Marchesin, D.: Analysis of in situ combustion of oil with pyrolysis and vaporization. Combust. Flame 158(6), 1097–1108 (2011)CrossRefGoogle Scholar
  31. 31.
    Mailybaev, Bruining, J., Marchesin, D.: Analytical formulas for in-situ combustion. SPE J. 16(03), 513–523 (2011)CrossRefGoogle Scholar
  32. 32.
    Mailybaev, A.A., Bruining, J., Marchesin, D.: Recovery of light oil by medium temperature oxidation. Transp. Porous Media 97, 317–343 (2013)CrossRefGoogle Scholar
  33. 33.
    Mailybaev, A.A., Marchesin, D., Bruining, J.: Resonance in low-temperature oxidation waves for porous media. SIAM J. Math. Anal. 43, 2230–2252 (2011)CrossRefGoogle Scholar
  34. 34.
    Poling, B.E., Prausnitz, J.M., John Paul, O.C., Reid, R.C.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)Google Scholar
  35. 35.
    Prigogine, I.: Introduction to thermodynamics of irreversible processes. Wiley (1967)Google Scholar
  36. 36.
    Xu, Z., Jianyi, L., Liangtian, S., Shilun, L., Weihua, L.: Research on the mechanisms of enhancing recovery of light-oil reservoir by air-injected low-temperature oxidation technique. Nat. Gas Ind. 24, 78–80 (2004)Google Scholar
  37. 37.
    Youngren, G.: Development and application of an in-situ combustion reservoir simulator. Soc. Pet. Eng. J. 20(01), 39–51 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Nacional de Matemática Pura e Aplicada – IMPARio de JaneiroBrazil

Personalised recommendations