Advertisement

Computational Geosciences

, Volume 20, Issue 5, pp 1029–1042 | Cite as

Interpretation of well-cell pressures on hexagonal grids in numerical reservoir simulation

  • Ivar Aavatsmark
Original Paper

Abstract

Peaceman’s equivalent well-cell radius for 2D square grids has been generalized to 2D grids consisting of regular hexagons. The development consists of the following steps. Firstly, the analytical solution for the pressure drop between injector and producer for wells in a seven-spot pattern is determined. Secondly, this solution is compared with the numerical solution on hexagonal grids for a sixth of a seven-spot pattern. Finally, the equivalent well-cell radius is calculated, and its asymptotic behavior for infinitely fine grids is derived. The results are valid for both steady-state and unsteady-state conditions.

Keywords

Peaceman radius Hexagonal grid Discretization Reservoir simulation 

Mathematics Subject Classification (2010)

65N06 76S05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aavatsmark, I.: Interpretation of well-cell pressures on stretched hexagonal grids in numerical reservoir simulation. Comput. Geosci. (2016). doi: 10.1007/s10596-016-9567-2
  2. 2.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)Google Scholar
  3. 3.
    Collins, R.E.: Flow of Fluids Through Porous Materials. Van Nostrand Reinhold, New York (1961)Google Scholar
  4. 4.
    Computer Modelling Group: IMEX User’s guide. Calgary (2014)Google Scholar
  5. 5.
    Dahlquist, G., Björck, Å.: Numerical Methods. Prentice-Hall, Englewood Cliffs NJ (1974)Google Scholar
  6. 6.
    Dake, L.P.: Fundamentals of Reservoir Engineering. Elsevier, Amsterdam (1978)Google Scholar
  7. 7.
    Ding, Y., Renard, G.: Representation of wells in numerical reservoir simulation. SPE Reserv. Eval. Eng. 1(1), 18–23 (1998)CrossRefGoogle Scholar
  8. 8.
    Fung, L.S.K., Hiebert, A.D., Nghiem, L.X.: Reservoir simulation with a control-volume finite-element method. SPE Reserv. Eng. 7(3), 349–357 (1992)CrossRefGoogle Scholar
  9. 9.
    Heinemann, Z.E., Brand, C.W., Munka, M., Chen, Y.M.: Modeling reservoir geometry with irregular grids. SPE Reserv. Eng. 6(2), 225–232 (1991)CrossRefGoogle Scholar
  10. 10.
    Higham, D.J., Higham, N.J.: MATLAB Guide. SIAM, Philadelphia (2000)Google Scholar
  11. 11.
    Lee, J.: Well Testing. Society of Petroleum Engineers of AIME, New York (1982)Google Scholar
  12. 12.
    Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937)Google Scholar
  13. 13.
    Palagi, C.L., Aziz, K.: Modeling vertical and horizontal wells with Voronoi grid. SPE Reserv. Eng. 9(1), 15–21 (1994)CrossRefGoogle Scholar
  14. 14.
    Peaceman, D.W.: Interpretation of well-block pressures in numerical reservoir simulation. SPE J. 18(3), 183–194 (1978)CrossRefGoogle Scholar
  15. 15.
    Peaceman, D.W.: Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. SPE J. 23(3), 531–543 (1983)CrossRefGoogle Scholar
  16. 16.
    Pruess, K., Bodvarsson, F.S.: A seven-point finite difference method for improved grid orientation performance in pattern steamfloods. In: SPE Reservoir Simulation Symposium, pp 175–184. San Francisco (1983)Google Scholar
  17. 17.
    Schlumberger: ECLIPSE Technical Description (2014)Google Scholar
  18. 18.
    Stegun, I.A., Zucker, R.: Automatic computing methods for special functions. Part II. The exponential integral. J. Res. Natl. Bur. Stand., Sect. B 78B(4), 199–216 (1974)CrossRefGoogle Scholar
  19. 19.
    van Poolen, H.K.: Radius-of-drainage and stabilization-time equations. Oil Gas J. 62(Sept), 138–146 (1964)Google Scholar
  20. 20.
    Winslow, A.M.: Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh. J. Comput. Phys. 2(1), 149–172 (1967)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Uni Research CIPRBergenNorway

Personalised recommendations