Computational Geosciences

, Volume 20, Issue 5, pp 881–908 | Cite as

A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition

ORIGINAL PAPER

Abstract

Advances in pore-scale imaging (e.g., μ-CT scanning), increasing availability of computational resources, and recent developments in numerical algorithms have started rendering direct pore-scale numerical simulations of multi-phase flow on pore structures feasible. Quasi-static methods, where the viscous and the capillary limit are iterated sequentially, fall short in rigorously capturing crucial flow phenomena at the pore scale. Direct simulation techniques are needed that account for the full coupling between capillary and viscous flow phenomena. Consequently, there is a strong demand for robust and effective numerical methods that can deliver high-accuracy, high-resolution solutions of pore-scale flow in a computationally efficient manner. Direct simulations of pore-scale flow on imaged volumes can yield important insights about physical phenomena taking place during multi-phase, multi-component displacements. Such simulations can be utilized for optimizing various enhanced oil recovery (EOR) schemes and permit the computation of effective properties for Darcy-scale multi-phase flows.

We implement a phase-field model for the direct pore-scale simulation of incompressible flow of two immiscible fluids. The model naturally lends itself to the transport of fluids with large density and viscosity ratios. In the phase-field approach, the fluid-phase interfaces are expressed in terms of thin transition regions, the so-called diffuse interfaces, for increased computational efficiency. The conservation law of mass for binary mixtures leads to the advective Cahn–Hilliard equation and the condition that the velocity field is divergence free. Momentum balance, on the other hand, leads to the Navier–Stokes equations for Newtonian fluids modified for two-phase flow and coupled to the advective Cahn–Hilliard equation. Unlike the volume of fluid (VoF) and level-set methods, which rely on regularization techniques to describe the phase interfaces, the phase-field method facilitates a thermodynamic treatment of the phase interfaces, rendering it more physically consistent for the direct simulations of two-phase pore-scale flow. A novel geometric wetting (wall) boundary condition is implemented as part of the phase-field method for the simulation of two-fluid flows with moving contact lines. The geometric boundary condition accurately replicates the prescribed equilibrium contact angle and is extended to account for dynamic (non-equilibrium) effects. The coupled advective Cahn–Hilliard and modified Navier–Stokes (phase-field) system is solved by using a robust and accurate semi-implicit finite volume method. An extension of the momentum balance equations is also implemented for Herschel–Bulkley (non-Newtonian) fluids. Non-equilibrium-induced two-phase flow problems and dynamic two-phase flows in simple two-dimensional (2-D) and three-dimensional (3-D) geometries are investigated to validate the model and its numerical implementation. Quantitative comparisons are made for cases with analytical solutions. Two-phase flow in an idealized 2-D pore-scale conduit is simulated to demonstrate the viability of the proposed direct numerical simulation approach.

Keywords

Phase-field method Two-phase flow Pore-scale flow simulation  CFD Digital rock Finite volume method Thermodynamics Contact line motion  Dynamic contact angle Wetting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)CrossRefGoogle Scholar
  2. 2.
    Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica et Materialia 27, 1085–1095 (1979)CrossRefGoogle Scholar
  3. 3.
    Anderson, D.M., McFadden, G.B.: A diffuse-interface description of internal waves in a near-critical fluid. Phys. Fluids 9, 1870–1879 (1997)CrossRefGoogle Scholar
  4. 4.
    Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30, 139–165 (1998)CrossRefGoogle Scholar
  5. 5.
    Antanovskii, L.K.: A phase field model of capillarity. Phys. Fluids 7, 747–753 (1995)CrossRefGoogle Scholar
  6. 6.
    Armstrong, R.T., Berg, S.: Interfacial velocities and capillary pressure gradients during Haines jumps. Phys. Rev. E 88, 043010–1-9 (2013)CrossRefGoogle Scholar
  7. 7.
    Armstrong, R.T., Evseev, N., Koroteev, D., Berg, S.: Modeling the velocity field during Haines jumps in porous media. Adv. Water Resour. 77, 57–68 (2015)CrossRefGoogle Scholar
  8. 8.
    Armstrong, R.T., Georgiadis, A., Ott, H., Klemin, D., Berg, S.: Critical capillary number: Desaturation studied with fast X-ray computed microtomography. Geophys. Res. Lett. 41, 1–6 (2014)CrossRefGoogle Scholar
  9. 9.
    Atkins, P., de Paula, J.: Atkins’ physical chemistry, 10th edition. Oxford University Press, Oxford, UK (2014)Google Scholar
  10. 10.
    Badalassi, V.E., Ceniceros, H.D., Banerjee, S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371–397 (2003)CrossRefGoogle Scholar
  11. 11.
    Ben Said, M., Selzer, M., Nestler, B., Braun, D., Greiner, C., Garcke, H.: A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. Langmuir 30, 4033–4039 (2014)CrossRefGoogle Scholar
  12. 12.
    Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. (PNAS) 110(10), 3755–3759 (2013)CrossRefGoogle Scholar
  13. 13.
    Bogdanov, I.I., Kpahou, J., Guerton, F.: Pore-scale single and two-phase transport in real porous medium. ECMOR XIII–13th European Conference on the Mathematics of Oil Recovery. Biarritz, France. September 10–13 (2012)Google Scholar
  14. 14.
    Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacements in sands. Trans AIME 146, 107–116 (1942)CrossRefGoogle Scholar
  15. 15.
    Cahn, J.W.: Free energy of a nonuniform system. II. Thermodynamic basis. J. Chem. Phys. 30, 1121–1124 (1959)CrossRefGoogle Scholar
  16. 16.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRefGoogle Scholar
  17. 17.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)CrossRefGoogle Scholar
  18. 18.
    Carlson, A.: Capillarity and dynamic wetting. Technical Report. Stockholm, Sweden: Royal Institute of Technology (2012)Google Scholar
  19. 19.
    Carlson, A., Do-Quang, M., Amberg, G.: Modeling of dynamic wetting far from equilibrium. Phys. Fluids 21, 121701–121704 (2009)CrossRefGoogle Scholar
  20. 20.
    Chella, R., Viñals, J.: Mixing of a two-phase fluid by a cavity flow. Phys. Rev. E 53, 3832–3840 (1996)CrossRefGoogle Scholar
  21. 21.
    Chen, H.-Y., Jasnow, D., Viñals, J.: Interface and contact line motion in a two phase fluid under shear flow. Phys. Rev. Lett. 85, 1686–1689 (2000)CrossRefGoogle Scholar
  22. 22.
    Chen, L., Kang, Q., Robinson, B.A., He, Y.-L., Tao, W.-Q.: Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems. Phys. Rev. E 87, 043306–1–16 (2013)Google Scholar
  23. 23.
    Chen, L., Rief, S., Wiegmann, A.: FlowDict tutorial 2012—predicting flow with FlowDict. Karlsruhe, Germany: Math2Market (2012)Google Scholar
  24. 24.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30, 329–364 (1998)CrossRefGoogle Scholar
  25. 25.
    Darwish, M., Moukalled, F.: Convective schemes for capturing interfaces of free-surface flows on unstructured grids. Numerical heat transfer, part B: Fundamentals 49, 19–42 (2006)CrossRefGoogle Scholar
  26. 26.
    Davis, H.T., Scriven, L.E.: Stress and structure in fluid interfaces. In: Davis, H.T., Scriven, L.E. (eds.) Advance in chemical physics, vol. XLIX, pp. 357–454. Wiley (1982)Google Scholar
  27. 27.
    Demianov, A.Yu., Dinariev, O.Yu., Evseev, N.V.: Introduction to the density functional method in hydrodynamics. Fizmatlit, Moscow: Russian Federation (2014)Google Scholar
  28. 28.
    Ding, H., Spelt, P.D.M.: Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E 75, 046708–1–8 (2007)CrossRefGoogle Scholar
  29. 29.
    Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 2078–2095 (2007)CrossRefGoogle Scholar
  30. 30.
    Dong, S.: On imposing dynamic contact-angle boundary conditions for wall-bounded liquid–gas flows. Comput. Methods Appl. Mech. Eng. 247-248, 179–200 (2012)CrossRefGoogle Scholar
  31. 31.
    Emmerich, H.: The diffuse interface approach in materials science—thermodynamic concepts and applications of phase-field models. Springer-Verlag, Heidelberg (2003)Google Scholar
  32. 32.
    Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)CrossRefGoogle Scholar
  33. 33.
    Ertekin, T., Abou-Kassem, J.H., King, G.R.: Basic and applied reservoir simulation. SPE Textbook Series Vol. 7. Richardson, Texas, USA: Society of Petroleum Engineers (2001)Google Scholar
  34. 34.
    Evans, R.: The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143–200 (1979)CrossRefGoogle Scholar
  35. 35.
    Glimm, J., Grove, J.W., Li, X.-L., Zhao, N.: Simple front tracking. In: Chen, G.-Q., DiBenedetto, E. (eds.) In Contemporary mathematics, vol. 238, pp. 133–149 (1999). Providence, RI, USA: American Mathematical SocietyGoogle Scholar
  36. 36.
    Hassanizadeh, S.M., Gray, W.G.: Toward an improved description of the physics of two-phase flow. Adv. Water Resour. 16, 53–67 (1993)CrossRefGoogle Scholar
  37. 37.
    Herschel, W.H., Bulkley, R.: Konsistenzmessungen von Gummi-Benzollösungen. Kolloid Zeitschrift 39, 291–300 (1926)CrossRefGoogle Scholar
  38. 38.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)CrossRefGoogle Scholar
  39. 39.
    Homsy, G.M.: Viscous fingering in porous media. Annual Reviews of Fluid Mechanics 19, 271–311 (1987)CrossRefGoogle Scholar
  40. 40.
    Jacqmin, D.: An energy approach to the continuum surface tension method. AIAA96-0858. In: Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics. Reno, Nevada, USA (1996)Google Scholar
  41. 41.
    Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127 (1999)CrossRefGoogle Scholar
  42. 42.
    Jacqmin, D.: Contact line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000)CrossRefGoogle Scholar
  43. 43.
    Jacqmin, D.: Onset of wetting failure in liquid–liquid systems. J. Fluid Mech. 517, 209–228 (2004)CrossRefGoogle Scholar
  44. 44.
    Joekar-Niasar, V., Hassanizadeh, S.M., Dahle, H.: Dynamic pore-network modeling of drainage in two-phase flow. J. Fluid Mech. 655, 38–71 (2010)CrossRefGoogle Scholar
  45. 45.
    Joekar-Niasar, V., Hassanizadeh, S.M.: Effect of fluids properties on non-equilibrium capillarity effects: dynamic pore-network modeling. Int. J. Multiphase Flow 37, 198–214 (2011)CrossRefGoogle Scholar
  46. 46.
    Khatavkar, V.V., Anderson, P.D., Duineveld, P.C., Meijer, H.E.H.: Diffuse-interface modelling of droplet impact. J. Fluid Mech. 581, 97–127 (2007)CrossRefGoogle Scholar
  47. 47.
    Khatavkar, V.V., Anderson, P.D., Meijer, H.E.H.: Capillary spreading of droplet in a partially wetting regime using a diffuse-interface model. J. Fluid Mech. 572, 367–387 (2007)CrossRefGoogle Scholar
  48. 48.
    Kim, J.: A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204, 784–804 (2005)CrossRefGoogle Scholar
  49. 49.
    Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)CrossRefGoogle Scholar
  50. 50.
    Lake, L.W.: Enhanced oil recovery. Englewood Cliffs, Prentice Hall (1989)Google Scholar
  51. 51.
    Levich, V.G.: Physicochemical hydrodynamics. NJ, USA: Prentice-Hall (1962)Google Scholar
  52. 52.
    Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)CrossRefGoogle Scholar
  53. 53.
    Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)CrossRefGoogle Scholar
  54. 54.
    Mazouchi, A., Gramlich, C.M., Homsy, G.M.: Time-dependent free surface Stokes flow with a moving contact line, I. Flow over plane surfaces. Phys. Fluids 16, 1647–1659 (2004)CrossRefGoogle Scholar
  55. 55.
    Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, 1–47 (2009)CrossRefGoogle Scholar
  56. 56.
    Moriarty, J.A., Schwartz, L.W.: Effective slip in numerical calculations of moving-contact-line problems. J. Eng. Math. 26, 81–86 (1992)CrossRefGoogle Scholar
  57. 57.
    Nadiga, B.T., Zaleski, S.: Investigations of a two-phase fluid model. Eur. J. Mech. - B/Fluids 15, 885–896 (1996)Google Scholar
  58. 58.
    Nourgaliev, R.R., Theofanous, T.G.: High fidelity interface tracking: unlimited anchored level set. J. Comput. Phys. 224, 836–866 (2007)CrossRefGoogle Scholar
  59. 59.
    Onsager, L.: Reciprocal processes in irreversible processes I. Phys. Rev. 37, 405–426 (1931)CrossRefGoogle Scholar
  60. 60.
    Onsager, L.: Reciprocal processes in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)CrossRefGoogle Scholar
  61. 61.
    Osher, S., Fedwik, S.: Level set methods and dynamic implicit surfaces. Springer, New York (2003)CrossRefGoogle Scholar
  62. 62.
    Papatzacos, P.: Macroscopic two-phase flow in porous media assuming the diffuse-interface model at pore level. Transp. Porous Media 49, 139–174 (2002)CrossRefGoogle Scholar
  63. 63.
    Papatzacos, P.: A model for multiphase and multicomponent flow in porous media, built on the diffuse-interface assumption. Transp. Porous Media 82, 443–462 (2010)CrossRefGoogle Scholar
  64. 64.
    Rider, W.J., Koth, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141, 112–152 (1998)CrossRefGoogle Scholar
  65. 65.
    Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Numerical modelling of sub-pore scale events in two-phase flow through porous media. Transp. Porous Media 101, 191–213 (2014)CrossRefGoogle Scholar
  66. 66.
    Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Adv. Water Resour. 74, 116–126 (2014)CrossRefGoogle Scholar
  67. 67.
    Renardy, M., Renardy, Y., Li, J.: Numerical simulation of moving contact line problems using a volume-of-fluid method. J. Comput. Phys. 171, 243–263 (2001)CrossRefGoogle Scholar
  68. 68.
    Ryazanov, A.V., van Dijke, M.I.J., Sorbie, K.S.: Two-phase pore-network modelling: existence of oil layers during water invasion. Transp. Porous Media 80, 79–99 (2009)CrossRefGoogle Scholar
  69. 69.
    Sahu, K.C., Valluri, P., Spelt, P.D.M., Matar, O.K.: Linear instability of pressure-driven channel flow of a Newtonian and a Herschel–Bulkley fluid. Phys. Fluids 19, 42104–1–18 (2007)CrossRefGoogle Scholar
  70. 70.
    Schleizer, A.D., Bonnecaze, R.T.: Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows. J. Fluid Mech. 383, 29–54 (1999)CrossRefGoogle Scholar
  71. 71.
    Snoeijer, J.H., Andreotti, B.: Moving contact lines: scales, regimes, and dynamical transitions. Annual Reviews of Fluid Mechanics 45, 269–292 (2013)CrossRefGoogle Scholar
  72. 72.
    Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science. Cambridge University Press, Cambridge (1999)Google Scholar
  73. 73.
    Smith, K.A., Ottino, J.M., Warren, P.B.: Simple representation of contact-line dynamics in a level-set model of an immiscible fluid interface. Ind. Eng. Chem. Res. 44, 1194–1198 (2005)CrossRefGoogle Scholar
  74. 74.
    Spelt, P.D.M.: A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys. 207, 389–404 (2005)CrossRefGoogle Scholar
  75. 75.
    Spelt, P.D.M.: Shear flow past two-dimensional droplets pinned or moving on an adhering channel wall at moderate Reynolds numbers: a numerical study. J. Fluid Mech. 561, 439–463 (2006)CrossRefGoogle Scholar
  76. 76.
    Svandal, A., Kvamme, B., Granasy, L., Pusztai, T., Buanes, T., Hove, J.: The phase field theory applied to CO2 and CH4 hydrate. J. Cryst. Growth 287, 486–490 (2006)CrossRefGoogle Scholar
  77. 77.
    Ubbink, O., Issa, R.I.: Method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 153, 26–50 (1999)CrossRefGoogle Scholar
  78. 78.
    Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multifluid flows. J. Comput. Phys. 100, 25–37 (1992)CrossRefGoogle Scholar
  79. 79.
    Valluri, P., Naraigh, L.O., Ding, H., Spelt, P.D.M.: Linear and nonlinear spatio-temporal instability in laminar two-layer flows. J. Fluid Mech. 656, 458–480 (2010)CrossRefGoogle Scholar
  80. 80.
    van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous density variation (in Dutch). Verh. K. Akad. Wet. Amsterdam, Sect. 1, 1(8). (English translation: Rowlinson, J.S. (1979). Journal of Statistical Physics, 20, 197-244.) (1893)Google Scholar
  81. 81.
    Wang, X., Gordaninejad, F.: Flow analysis of field-controllable, electro- and magneto-rheological fluids using Herschel–Bulkley model. J. Intell. Mater. Syst. Struct. 10, 601–608 (1999)CrossRefGoogle Scholar
  82. 82.
    Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)CrossRefGoogle Scholar
  83. 83.
    Zhang, J., Miksis, M.J., Bankoff, S.G.: Nonlinear dynamics of a two-dimensional viscous drop under shear flow. Phys. Fluids 18, 072106–1–10 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Faruk O. Alpak
    • 1
  • Beatrice Riviere
    • 2
  • Florian Frank
    • 2
  1. 1.Shell International Exploration & Production Inc.HoustonUSA
  2. 2.Department of Computational and Applied MathematicsRice UniversityHoustonUSA

Personalised recommendations