Computational Geosciences

, Volume 20, Issue 3, pp 737–749 | Cite as

Value of information in closed-loop reservoir management

  • E. G. D. BarrosEmail author
  • P. M. J. Van den Hof
  • J. D. Jansen
Open Access


This paper proposes a new methodology to perform value of information (VOI) analysis within a closed-loop reservoir management (CLRM) framework. The workflow combines tools such as robust optimization and history matching in an environment of uncertainty characterization. The approach is illustrated with two simple examples: an analytical reservoir toy model based on decline curves and a water flooding problem in a two-dimensional five-spot reservoir. The results are compared with previous work on other measures of information valuation, and we show that our method is a more complete, although also more computationally intensive, approach to VOI analysis in a CLRM framework. We recommend it to be used as the reference for the development of more practical and less computationally demanding tools for VOI assessment in real fields.


Value of information Value of clairvoyance Decision making Geological uncertainties Closed-loop reservoir management Model-based optimization History matching Well production data 


  1. 1.
    Aanonsen, S.I., Naevdal, G., Oliver, D.S, Reynolds, A.C., Valles, B.: The ensemble Kalman filter in reservoir engineering – a review. SPE J. 14(3), 393–412 (2009)CrossRefGoogle Scholar
  2. 2.
    Bhattacharjya, D., Eidsvik, J., Mukerji, T.: The value of information in spatial decision making. Math. Geosci. 42(2), 141–163 (2010)CrossRefGoogle Scholar
  3. 3.
    Bratvold, R.B., Bickel, E.J., Lohne, H.P.: Value of information: the past, present, and future. SPE Reserv. Eval. Eng. 12(4), 630–638 (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization. SPE J. 14(4), 634–645 (2009)CrossRefGoogle Scholar
  5. 5.
    Evensen, G.: Data assimilation – the ensemble Kalman filter, 2nd edn. Springer, Berlin (2009)Google Scholar
  6. 6.
    Fonseca, R.M., Kahrobaei, S., Van Gastel, L.J.T., Leeuwenburgh, O., Jansen, J.D.: Quantification of the impact of ensemble size on the quality of an ensemble gradient using principles of hypothesis testing. Paper 173236-MS presented at the 2015 SPE Reservoir Simulation Symposium, 22–25 February, Houston, USA (2015)Google Scholar
  7. 7.
    Howard, R.A: Information value theory. IEEE Transactions on Systems, Science and Cybernetics SSC-2(1), 22–26 (1966)CrossRefGoogle Scholar
  8. 8.
    Jansen, J.D., Brouwer, D.R., Nævdal, G., van Kruijsdijk, C.P.J.W.: Closed-loop reservoir management. First Break, January 23, 43–48 (2005)Google Scholar
  9. 9.
    Jansen, J.D., Bosgra, O.H., van den Hof, P.M.J.: Model-based control of multiphase flow in subsurface oil reservoirs. J. Process Control 18, 846–855 (2008)CrossRefGoogle Scholar
  10. 10.
    Jansen, J.D., Douma, S.G., Brouwer, D.R., Van den Hof, P.M.J., Bosgra, O.H., Heemink, A.W.: Closed-loop reservoir management. Paper SPE 119098 presented at the SPE Reservoir Simulation Symposium, The Woodlands, USA (2009)Google Scholar
  11. 11.
    Kikani, J.: Reservoir surveillance, SPE, Richardson (2013)Google Scholar
  12. 12.
    Krymskaya, M.V., Hanea, R.G., Jansen, J.D., Heemink, A.W.: Observation sensitivity in computer-assisted history matching. In: Proceedings of the 72 nd EAGE Conference & Exhibition, Barcelona (2010)Google Scholar
  13. 13.
    Le, D.H., Reynolds, A.C.: Optimal choice of a surveillance operation using information theory. Comput. Geosci. 18, 505–518 (2014a)CrossRefGoogle Scholar
  14. 14.
    Le, D.H., Reynolds, A.C.: Estimation of mutual information and conditional entropy for surveillance optimization. SPE J. 19(4), 648–661 (2014b)CrossRefGoogle Scholar
  15. 15.
    Lie, K.-A., Krogstad, S., Ligaarden, I. S., Natvig, J. R., Nilsen, H. M., Skalestad, B.: Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)CrossRefGoogle Scholar
  16. 16.
    Naevdal, G., Brouwer, D.R., Jansen, J.D.: Waterflooding using closed-loop control. Comput. Geosci. 10(1), 37–60 (2006)CrossRefGoogle Scholar
  17. 17.
    Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  18. 18.
    Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011)CrossRefGoogle Scholar
  19. 19.
    Sarma, P., Durlofsky, L.J., Aziz, K.: Computational techniques for closed-loop reservoir modeling with application to a realistic reservoir. Pet. Sci. Technol. 26(10&11), 1120–1140 (2008)CrossRefGoogle Scholar
  20. 20.
    Van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(1), 202–210 (2009)CrossRefGoogle Scholar
  21. 21.
    Yeten, B., Durlofsky, L.J., Aziz, K.: Optimization of nonconventional well type, location and trajectory. SPE J. 8(3), 200–210 (2003)CrossRefGoogle Scholar
  22. 22.
    Wang, C., Li, G., Reynolds, A.C.: Production optimization in closed-loop reservoir management. SPE J. 14(3), 506–523 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. G. D. Barros
    • 1
    Email author
  • P. M. J. Van den Hof
    • 2
  • J. D. Jansen
    • 1
  1. 1.Department of Geoscience and EngineeringDelft University of TechnologyDelftNetherlands
  2. 2.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations