Advertisement

Computational Geosciences

, Volume 19, Issue 2, pp 269–284 | Cite as

A stochastically and spatially adaptive parallel scheme for uncertain and nonlinear two-phase flow problems

  • Ilja KrökerEmail author
  • Wolfgang Nowak
  • Christian Rohde
ORIGINAL PAPER

Abstract

Simulating in flow problems in porous media often requires techniques for uncertainty quantification in order to represent parameter values that are not given exactly. Straightforward Monte-Carlo (MC) methods have a limited efficiency due to slow convergence. Better convergence in low-parametric problems can be achieved with polynomial chaos expansion (PCE) techniques. The PCE approach yields a coupled deterministic system to be solved. The degree of coupling increases with the non-linearity of the considered equations and with the order of polynomial expansion. This fact increases the computational effort of PCE and significantly reduces the scalability in parallelization. We present an application of the hybrid stochastic Galerkin finite volume (HSG-FV) method to a two-phase flow problem in two space dimensions. The method extends the classical polynomial chaos expansion by a multi-element discretization in the probability space of the parameters. It leads to a deterministic system that is coupled to a lesser degree than in element-free PCE versions, respectively, fully decoupled in stochastic elements (SE). Therefore, the HSG-FV method allows for more efficient parallelization. For the further reduction of complexity, we present a new stochastic adaptivity method. We present numerical examples in two spatial dimensions with linear and nonlinear fractional flow functions in the two-phase flow problem. The flow functions might depend in a discontinuous manner on the unknown spatial position of porous-medium heterogeneities. Finally, we discuss the interplay of the new method with spatial adaptivity per SE for these problems.

Keywords

Stochastic Galerkin Hybrid stochastic Galerkin Finite volume method Nonlinear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarnes, J., Gimse, T., Lie, K.A.: An introduction to the numerics of flow in porous media using matlab. In: Hasle, G., Lie, K.A., Quak, E. (eds.) Geometric modelling, numerical simulation, and optimization, pp. 265–306. Springer, Berlin Heidelberg (2007). doi: 10.1007/978-3-540-68783-2_9 CrossRefGoogle Scholar
  2. 2.
    Abgrall, R.: A simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: Application to fluid flow problems (2007). Submitted to J. Comput. PhysGoogle Scholar
  3. 3.
    Alpert, B.K.: A class of bases in L 2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993). doi: 10.1137/0524016 CrossRefGoogle Scholar
  4. 4.
    Andreianov, B., Karlsen, K.H., Risebro, N.H.: On vanishing viscosity approximation of conservation laws with discontinuous flux. Netw. Heterog. Media 5(3), 617–633 (2010). doi: 10.3934/nhm.2010.5.617 CrossRefGoogle Scholar
  5. 5.
    Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011). doi: 10.1007/s00211-011-0377-0 CrossRefGoogle Scholar
  6. 6.
    Berres, S., Bürger, R., Karlsen, K.H.: Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions. In: Proceedings of the 10th International Congress on Computational and Applied Mathematics (ICCAM-2002), vol. 164/165, pp. 53–80 (2004). doi: 10.1016/S0377-0427(03)00496-5
  7. 7.
    Bürger, R., Kröker, I., Rohde, C.: A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit. ZAMM Z. Angew. Math. Mech. (2013). doi: 10.1002/zamm.201200174 Google Scholar
  8. 8.
    Cameron, R.H., Martin, W.T.: The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Ann. Math. 48(2), 385–392 (1947)CrossRefGoogle Scholar
  9. 9.
    Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, 3rd edn., vol. 325. Springer-Verlag, Berlin (2010). doi: 10.1007/978-3-642-04048-1 CrossRefGoogle Scholar
  10. 10.
    Ghanem, R.G., Spanos, P.D.: Stochastic finite elements: a spectral approach. Springer-Verlag, New York (1991)CrossRefGoogle Scholar
  11. 11.
    Helmig, R.: Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Environmental engineering. Springer (1997)Google Scholar
  12. 12.
    Kissling, F., Karlsen, K.: On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 7/8, 678–689 (2014). doi: 10.1002/zamm.201200141 CrossRefGoogle Scholar
  13. 13.
    Köppel, M., Kröker, I., Rohde, C.: Stochastic modeling for heterogeneous two-phase flow. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, vol. 77, pp. 353–361. Springer International Publishing (2014). doi: 10.1007/978-3-319-05684-5_34
  14. 14.
    Kurganov, A., Petrova, G.: Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Methods Partial Diff. Equat. 21(3), 536–552 (2005). doi: 10.1002/num.20049 CrossRefGoogle Scholar
  15. 15.
    Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Engrg. 194(12-16), 1295–1331 (2005). doi: 10.1016/j.cma.2004.05.027 CrossRefGoogle Scholar
  16. 16.
    Mishra, S., Schwab, C.: Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comp. 81(280), 1979–2018 (2012). doi: 10.1090/S0025-5718-2012-02574-9 CrossRefGoogle Scholar
  17. 17.
    Oldham, K., Myland, J., Spanier, J., 2nd edn.: An Atlas of Functions. Springer, New York (2009). doi: 10.1007/978-0-387-48807-3 CrossRefGoogle Scholar
  18. 18.
    Panov, E.Y.: Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Diff. Equat. 2(4), 885–908 (2005). doi: 10.1142/S0219891605000658 CrossRefGoogle Scholar
  19. 19.
    Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009). doi: 10.1016/j.jcp.2008.12.018 CrossRefGoogle Scholar
  20. 20.
    Schmidt, A., Siebert, K.G.: Design of adaptive finite element software, Lecture Notes in Computational Science and Engineering, vol. 42. Springer-Verlag, Berlin (2005). The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux)Google Scholar
  21. 21.
    Schmidt, A., Siebert, K.G., Heine, C.J., Köster, D., Kriessl, O.: ALBERTA: An adaptive hierarchical finite element toolbox. http://www.alberta-fem.de/ (2000–2014)
  22. 22.
    Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer-Verlag (1996). From the First ACM Workshop on Applied Computational GeometryGoogle Scholar
  23. 23.
    Soize, C., Ghanem, R.: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (electronic) (2004). doi: 10.1137/S1064827503424505 CrossRefGoogle Scholar
  24. 24.
    Tryoen, J., Le Maître, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010). doi: 10.1016/j.jcp.2010.05.007 CrossRefGoogle Scholar
  25. 25.
    Tveito, A., Winther, R.: The solution of nonstrictly hyperbolic conservation laws may be hard to compute. SIAM J. Sci. Comput. 16(2), 320–329 (1995). doi: 10.1137/0916021 CrossRefGoogle Scholar
  26. 26.
    Wiener, N.: The homogeneous chaos. Amer. J. Math. 60(4), 897–936 (1938). doi: 10.2307/2371268 CrossRefGoogle Scholar
  27. 27.
    Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003). doi: 10.1016/S0021-9991(03)00092-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IANS, Universtität StuttgartStuttgartGermany
  2. 2.Institut für Wasser- und Umweltsystemmodellierung/LH2Universität StuttgartStuttgartGermany

Personalised recommendations