Computational Geosciences

, Volume 19, Issue 3, pp 655–671 | Cite as

Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation

  • Mingliang Xie
  • K. Ulrich Mayer
  • Francis Claret
  • Peter Alt-Epping
  • Diederik Jacques
  • Carl Steefel
  • Christophe Chiaberge
  • Jiri Simunek


Changes of porosity, permeability, and tortuosity due to physical and geochemical processes are of vital importance for a variety of hydrogeological systems, including passive treatment facilities for contaminated groundwater, engineered barrier systems (EBS), and host rocks for high-level nuclear waste (HLW) repositories. Due to the nonlinear nature and chemical complexity of the problem, in most cases, it is impossible to verify reactive transport codes analytically, and code intercomparisons are the most suitable method to assess code capabilities and model performance. This paper summarizes model intercomparisons for six hypothetical scenarios with generally increasing geochemical or physical complexity using the reactive transport codes CrunchFlow, HP1, MIN3P, PFlotran, and TOUGHREACT. Benchmark problems include the enhancement of porosity and permeability through mineral dissolution, as well as near complete clogging due to localized mineral precipitation, leading to reduction of permeability and tortuosity. Processes considered in the benchmark simulations are advective-dispersive transport in saturated media, kinetically controlled mineral dissolution-precipitation, and aqueous complexation. Porosity changes are induced by mineral dissolution-precipitation reactions, and the Carman-Kozeny relationship is used to describe changes in permeability as a function of porosity. Archie’s law is used to update the tortuosity and the pore diffusion coefficient as a function of porosity. Results demonstrate that, generally, good agreement is reached amongst the computer models despite significant differences in model formulations. Some differences are observed, in particular for the more complex scenarios involving clogging; however, these differences do not affect the interpretation of system behavior and evolution.


Permeability-porosity relationship Tortuosity-porosity relationship Mineral dissolution-precipitation Benchmark CrunchFlow HP1 MIN3P PFlotran TOUGHREACT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material (3.5 mb)
(ZIP 3.53 MB)


  1. 1.
    Wagner, R., Kühn, M., Meyn, V., Pape, H., Vath, U., Clauser, C.: Numerical simulation of pore space clogging in geothermal reservoirs by precipitation of anhydrite. Int. J. Rock Mech. Min. Sci. 42, 1070–1081 (2005)CrossRefGoogle Scholar
  2. 2.
    Annandale, J.G., Jovanovic, N.Z., Benadè, N., Tanner, P.D.: Modelling the long-term effect of irrigation with gypsiferous water on soil and water resources. Agric. Ecosyst. Environ. 76, 109–119 (1999)CrossRefGoogle Scholar
  3. 3.
    Houben, G.J.: Corrigendum to iron oxide incrustations in wells—part 1: Genesis, mineralogy and geochemistry. Appl. Geochem. 18(6), 927–939 (2003)CrossRefGoogle Scholar
  4. 4.
    Rinck-Pfeiffer, S.M., Ragusa, S.R., Sztajnbok, P., Vandevelde, T.: Interrelationships between biological, chemical and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells. Water Res. 34(7), 2110–2118 (2000)CrossRefGoogle Scholar
  5. 5.
    De Windt, L., Pellegrini, D., van der Lee, J.: Coupled modeling of cement/claystone interactions and radionuclide migration. J. Contam. Hydrol. 68(3–4), 165–182 (2004)CrossRefGoogle Scholar
  6. 6.
    Xie, M., Kolditz, O., Moog, H.C.: A geochemical transport model for thermo-hydro-chemical (THC) coupled processes with saline water. Water Resour. Res. 47(2), W02545 (2011). doi: 10.1029/2010WR009270 CrossRefGoogle Scholar
  7. 7.
    Liu, S., Jacques, D., Govaerts, J., Wang, L.: Conceptual model analysis of interaction at a concrete–Boom Clay interface. Phys. Chem. Earth (2014). doi: 10.1016/j.pce.2013.11.009
  8. 8.
    Lagneau, V., van der Lee, J.: Operator-splitting-based reactive transport models in strong feedback of porosity change: the contribution of analytical solutions for accuracy validation and estimator improvement. J. Contam. Hydrol. 112, 118–129 (2010)CrossRefGoogle Scholar
  9. 9.
    Hayek, M., Kosakowski, G., Churakov, S.: Exact analytical solutions for a diffusion problem coupled with a precipitation-dissolution reaction and feedback of porosity change. Water Resour. Res. (2011). doi: 10.1029/2010WR010321
  10. 10.
    Hayek, M., Kosakowski, G., Jakob, A., Churakov, S.: A class of analytical solutions for multidimensional multispecies diffusive transport coupled with precipitation-dissolution reactions and porosity changes. Water Resour. Res. (2012). doi: 10.1029/2011WR011663
  11. 11.
    Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S, de Dieuleveult, C., Erhel, J., van der Lee, J., Lagneau, V., Mayer, K.U., Macquarrie, K.T.B.: Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case. Comput. Geosci. 14(3), 483–502 (2010)CrossRefGoogle Scholar
  12. 12.
    Allison, J.D., Brown, D.S., Novo-Gradac, K.J.: MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user’s manual. United States Environmental Protection Agency, Office of Research and Development, Washington, DC, EPA/600/3-91/021, pp. 106 (1991)Google Scholar
  13. 13.
    Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimu̇nek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. (2014). doi: 10.1007/s10596-014-9443-x
  14. 14.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.Th: Modeling Coupled Hydrologic and Chemical Processes: Long-Term Uranium Transport following Phosphorus Fertilization. Vadose Zone J. 7(2), 698–711 (2008). doi: 10.2136/vzj2007.0084 CrossRefGoogle Scholar
  15. 15.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.Th.: Modelling coupled water flow, solute transport and geochemical reactions affection heavy metal migration in a Podzol soil. Geoderma 145, 449–461 (2008)CrossRefGoogle Scholar
  16. 16.
    Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. (2002). doi: 10.1029/2001WR000862
  17. 17.
    Mayer, K. U., MacQuarrie, K.T.B.: Solution of the MoMaS reactive transport benchmark with MIN3P—model formulation and simulation results. Comput. Geosci. (2010). doi: 10.1007/s10596-009-9158-6
  18. 18.
    Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J.: PFLOTRAN User manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes (2013)Google Scholar
  19. 19.
    Xu, T., Sonnenthal, E.L., Spycher, N., Pruess, K.: TOUGHREACT user’s guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media. In: Lawrence Berkeley National Laboratory Report LBNL-55460 (Ed.) (2004)Google Scholar
  20. 20.
    Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput. Geosci. 32, 145–165 (2006)CrossRefGoogle Scholar
  21. 21.
    Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 37, 763–774 (2011)CrossRefGoogle Scholar
  22. 22.
    Carrier, W.D.: Goodbye, Hazen; Hello Kozeny-Carman. J. Geotech. Geoenviron. Eng. (2003). doi: 10.1061/(ASCE)1090-0241(2003)129:11(1054)
  23. 23.
    Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)CrossRefGoogle Scholar
  24. 24.
    Lichtner, P.C.: In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Continuum formulation of multicomponent-multiphase reactive transport, Vol. 34, pp 1–81 . Mineralogical Society of America, Washington (1996). (Chapter 1)Google Scholar
  25. 25.
    Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: Survey, U.S.G (ed.) Water-resources investigations, Denver (1999)Google Scholar
  26. 26.
    Marty, N.C.M., Tournassat, Ch., Burnol, A., Giffaut, E., Gaucher, E.C.: Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. J. Hydrol. 364(1–2), 58–72 (2009). doi: 10.1016/j.jhydrol.2008.10.013 CrossRefGoogle Scholar
  27. 27.
    Saripalli, K.P., Meyer, P.D., Bacon, D.H., Freedman, V.L.: Changes in hydrologic properties of aquifer media due to chemical reactions: a review. Crit. Rev. Environ. Sci. Technol. 31(2), 311–349 (2001)CrossRefGoogle Scholar
  28. 28.
    Le Gallo, Y., Bildstein, O., Brosse, E.: Coupled reaction-flow modelling of diagenetic changes in reservoir permeability, porosity and mineral compositions. J. Hydrol. 209, 366–388 (1998)CrossRefGoogle Scholar
  29. 29.
    Gouze, P., Coudrain-Ribstein, A.: Chemical reactions and porosity changes during sedimentary diagenesis. Appl. Geochem. 17, 39–47 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mingliang Xie
    • 1
  • K. Ulrich Mayer
    • 1
  • Francis Claret
    • 2
  • Peter Alt-Epping
    • 3
  • Diederik Jacques
    • 4
  • Carl Steefel
    • 5
  • Christophe Chiaberge
    • 2
  • Jiri Simunek
    • 6
  1. 1.Department of Earth, Ocean and Atmospheric SciencesThe University of British ColumbiaVancouverCanada
  2. 2.BRGMOrleans CedexFrance
  3. 3.Rock-Water Interaction Group, Institute of Geological SciencesUniversity of BernBernSwitzerland
  4. 4.Belgian Nuclear Research Centre SCK. CENMolBelgium
  5. 5.Lawrence Berkeley National LaboratoryBerkeleyUSA
  6. 6.University of CaliforniaRiversideUSA

Personalised recommendations