Computational Geosciences

, Volume 18, Issue 5, pp 831–850 | Cite as

The finite element method with continuity constraints for stair-step grids in geoscience



This work investigates the enforcement of continuity constraints on stair-step grids which are specialized grids for simulations in geosciences. They are rectilinear in horizontal directions but locally discontinuous (i.e., nonconforming) in the vertical direction. Furthermore, they allow for (partly) collapsed elements in order to model pinched-out layers. A robust and efficient algorithm for enforcing continuity is proposed which is tailored to the special properties of stair-step grids. A number of two- and three-dimensional finite element method (FEM) simulations on stair-step grids are conducted. Thereby, the Lagrange multiplier and penalty method with different ansatz spaces are studied for pointwise and averaged constraints. A particulary useful choice is the penalty method with continuous constraints and penalty parameters that depend on the element size.


FEM Constraints Penalty method Lagrange multipliers Geosciences 

Mathematics Subject Classifications (2010)

74S05 8608 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)CrossRefGoogle Scholar
  2. 2.
    Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971)CrossRefGoogle Scholar
  3. 3.
    Baker, G.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977)CrossRefGoogle Scholar
  4. 4.
    Bathe, K.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)Google Scholar
  5. 5.
    Belytschko, T., Liu, W., Moran, B.: Nonlinear Finite Elements for continua and Structures. Wiley, Chichester (2000)Google Scholar
  6. 6.
    Bernadi, C., Maday, Y., Patera, A.: Domain decomposition by the mortar element methods. In: Kaper, H., Garbey, M. (eds.) Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, Vol. 384, pp 269–286. Kluwer, Dordrecht (1993)CrossRefGoogle Scholar
  7. 7.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. R-2, 129–151 (1974)Google Scholar
  8. 8.
    Carey, G., Kabaila, A., Utku, M.: On penalty methods for interelement constraints. Comp. Methods Appl. Mech. Eng. 30, 151–171 (1982)CrossRefGoogle Scholar
  9. 9.
    Cockburn, B., Karniadakis, G., Shu, C.: Discontinuous Galerkin methods. Theory, Computation and Applications. Lectures Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)Google Scholar
  10. 10.
    Gringarten, E., Arpat, B., Haouesse, A., Dutranois, A., Deny, L., Jayr, S., Tertois, A., Mallet, J., Bernal, A., Nghiem, L.: New grids for robust reservoir modeling. In: SPE Annual Technical Conference and Exhibition. Denver (2008)Google Scholar
  11. 11.
    Gringarten, E., Haouesse, A., Arpat, B., Nghiem, L.: Advantages of using vertical stair step faults in reservoir grids for flow simulation. In: SPE Reservoir Simulation Symposium, The Woodlands (2009)Google Scholar
  12. 12.
    Hantschel, T., Kauerauf, A.: Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin (2009)Google Scholar
  13. 13.
    Hestenes, M.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)CrossRefGoogle Scholar
  14. 14.
    Hesthaven, J., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. In: Springer Texts in Applied Mathematics, vol. 54. Springer, Berlin (2008)Google Scholar
  15. 15.
    Ji, H., Dolbow, J.: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Internat. J. Numer. Methods Eng. 61, 2508–2535 (2004)CrossRefGoogle Scholar
  16. 16.
    Mourad, H., Dolbow, J., Harari, I.: A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces. Internat. J. Numer. Methods Eng. 69, 772–793 (2007)CrossRefGoogle Scholar
  17. 17.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 36, pp. 9–15. Springer, Berlin (1971)Google Scholar
  18. 18.
    Powell, M.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.): Optimization, pp 283–298. Academic, New York (1969)Google Scholar
  19. 19.
    Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (1999)Google Scholar
  20. 20.
    Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)Google Scholar
  21. 21.
    Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms And Theory. Springer Series in Computational Mathematics. Springer, Berlin (2005)Google Scholar
  22. 22.
    Wohlmuth, B.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)CrossRefGoogle Scholar
  23. 23.
    Zienkiewicz, O., Taylor, R.: The Finite Element Method, vol. 1–3. Butterworth-Heinemann, Oxford (2000)Google Scholar
  24. 24.
    Zilian, A., Fries, T.: A localized mixed-hybrid method for imposing interfacial constraints in the extended finite element method (XFEM). Internat. J. Numer. Methods Engrg. 79, 733–752 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute for Structural AnalysisGraz University of TechnologyGrazAustria
  2. 2.Schlumberger Information SolutionsAachenGermany

Personalised recommendations