Advertisement

Computational Geosciences

, Volume 18, Issue 5, pp 747–762 | Cite as

Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method

  • Shuaiwei DingEmail author
  • Hanqiao Jiang
  • Junjian Li
  • Guoping Tang
ORIGINAL PAPER

Abstract

Determining the optimum placement of new wells in an oil field is a crucial work for reservoir engineers. The optimization problem is complex due to the highly nonlinearly correlated and uncertain reservoir performances which are affected by engineering and geologic variables. In this paper, the combination of a modified particle swarm optimization algorithm and quality map method (QM + MPSO), modified particle swarm optimization algorithm (MPSO), standard particle swarm optimization algorithm (SPSO), and centered-progressive particle swarm optimization (CP-PSO) are applied for optimization of well placement. The SPSO, CP-PSO, and MPSO algorithms are first discussed, and then the modified quality map method is discussed, and finally the implementation of these four methods for well placement optimization is described. Four example cases which involve depletion drive model, water injection model, and a real field reservoir model, with the maximization of net present value (NPV) as the objective function are considered. The physical model used in the optimization analyses is a 3-dimensional implicit black-oil model. Multiple runs of all methods are performed, and the results are averaged in order to achieve meaningful comparisons. In the case of optimizing placement of a single producer well, it is shown that it is not necessary to use the quality map to initialize the position of well placement. In other cases considered, it is shown that the QM + MPSO method outperforms MPSO method, and MPSO method outperforms SPSO and CP-PSO method. Taken in total, the modification of SPSO method is effective and the applicability of QM + MPSO for this challenging problem is promising

Keywords

Well placement optimization Standard particle swarm optimization Centered-progressive particle swarm optimization Modified particle swarm optimization Quality map Geological uncertainty Reservoir simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alander, J. T.: On optimal population size of genetic algorithmsProceedings of CompEuro’92 Computer Systems and Software Engineering, pp. 65–70 (1992)Google Scholar
  2. 2.
    Aliyev, E.: Use of hybrid approaches and metaoptimization for well placement problems. Stanford University, Doctoral dissertation (2011)Google Scholar
  3. 3.
    AlQahtani, G., Vadapalli, R., Siddiqui, S., Bhattacharya, S.: Well optimization strategies in conventional reservoirsSPE Saudi Arabia Section Technical Symposium and Exhibition, SPE 160861 (2012)Google Scholar
  4. 4.
    Artus, V., Durlofsky, L. J., Onwunalu, J., Aziz, K.: Optimization of nonconventional wells under uncertainty using statistical proxies. Comput. Geosci 10(4), 389–404 (2006)CrossRefGoogle Scholar
  5. 5.
    Aziz, K., Settari, A.: Petroleum reservoir simulation. Applied Science Publishers. Ltd, London (1979)Google Scholar
  6. 6.
    Barker, J. W., Cuypers, M., Holden, L.: Quantifying uncertainty in production forecasts: another look at the PUNQ-S3 problem. SPE J 6(4), 433–441 (2001)CrossRefGoogle Scholar
  7. 7.
    Bergamaschi, L., Mantica, S., Manzini, G.: A mixed finite element-finite volume formulation of the black-oil model. SIAM J. Sci. Comput 20(3), 970–997 (1998)CrossRefGoogle Scholar
  8. 8.
    Clerc, M.: Particle swarm optimization. In International scientific and technical encyclopaedia. Hoboken, Wiley (2006)CrossRefGoogle Scholar
  9. 9.
    Coats, K. H., Thomas, T. K., Pierson, R. G.: Compositional and black oil reservoir simulatorSPE symposium on reservoir simulation, SPE 29111 (1995)Google Scholar
  10. 10.
    Cooren, Y., Clerc, M., Siarry, P.: Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm. Swarm Intell 3(2), 149–178 (2009)CrossRefGoogle Scholar
  11. 11.
    Guyaguler, B., Horne, R., Rogers, L., Rosenzweig, J.: Optimization of well placement in a Gulf of Mexico waterflooding project. SPE Reserv. Eval. Eng 5(3), 229–236 (2002)CrossRefGoogle Scholar
  12. 12.
    Badru, O.: Well-placement optimization using the quality map approach. Stanford University, M.Sc, Dissertation (2003)Google Scholar
  13. 13.
    Badru, O., Kabir, C. S.: Well placement optimization in field developmentSPE Annual Technical Conference and Exhibition, SPE 84191 (2003)Google Scholar
  14. 14.
    Bangerth, W., Klie, H., Wheeler, M. F., Stoffa, P. L., Sen, M. K.: On optimization algorithms for the reservoir oil well placement problem. Comput. Geosci 10, 303–319 (2006)CrossRefGoogle Scholar
  15. 15.
    Bittencourt, A. C., Horne, R. N.: Reservoir development and design optimizationSPE Annual Technical Conference and Exhibition, SPE 38895 (1997)Google Scholar
  16. 16.
    Bouzarkouna, Z., Ding, D. Y., Auger, A.: Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models. Comput. Geosci 16, 75–92 (2011)CrossRefGoogle Scholar
  17. 17.
    Da Cruz, P. S., Horne, R. N., Deutsch, C. V.: The quality map: a tool for reservoir uncertainty quantification and decision making. SPE Reserv. Eval. Eng 7, 6–14 (2004)CrossRefGoogle Scholar
  18. 18.
    De, A. J.S., Cavalcante, Filho: Methodology for quality map generation to assist the selection and refinement of production strategiesSPE Annual Technical Conference and Exhibition, SPE 101940 (2005)Google Scholar
  19. 19.
    Harp, D. R., Vesselinov, V. V.: An agent-based approach to global uncertainty and sensitivity analysis. Comput. Geosci 40, 19–27 (2012)CrossRefGoogle Scholar
  20. 20.
    Eberhart, R. C., Kennedy, J.: A new optimizer using particle swarm theoryProceedings of the 6th International Symposium on Micromachine and Human Science, pp. 39–43 (1995)Google Scholar
  21. 21.
    Eberhart, R. C., Shi, Y. H.: Tracking and optimizing dynamic systems with particle swarmsProceedings of the 2001 Congress on Evolutionary Computation, Piscatawav, NJ: IEEE Press, pp. 94–100 (2001)Google Scholar
  22. 22.
    Engelbrecht, A. P.: Fundamentals of computational swarm intelligence. Wiley, Chichester (2005)Google Scholar
  23. 23.
    Fernando, A., Santos, M.: Inversion of self-potential of idealized bodies’ anomalies using particle swarm optimization. Comput. Geosci 36, 1185–119 (2010)CrossRefGoogle Scholar
  24. 24.
    Gu, Y., Oliver, D. S.: History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter. SPE J 10(2), 217–224 (2005)CrossRefGoogle Scholar
  25. 25.
    Gu, Y., Oliver, D.: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE J 12(4), 438–446 (2007)CrossRefGoogle Scholar
  26. 26.
    Liu, J. Y.: The research and improvement of particle swarm optimization. Harbin Institute of Technology, M.S.E. thesis (2006)Google Scholar
  27. 27.
    Liu, N., Jalali, Y.: Closing the loop between reservoir modeling and well placement and positioningSPE Intelligent Energy Conference and Exhibition, SPE 98198 (2006)Google Scholar
  28. 28.
    Litvak, M., Gane, B., Williams, G., Mansfield, M., Angert, P., Macdonald, C., McMurray, L., Skinner, R., Walker, G. J.: Field development optimization technologySPE Reservoir Simulation Symposium, SPE 106426 (2007)Google Scholar
  29. 29.
    Li, L., Jafarpour, B.: A variable-control well placement optimization for improved reservoir development. Comput. Geosci 16, 871–889 (2012)CrossRefGoogle Scholar
  30. 30.
    Li, L., Jafarpour, B., Mohammad-Khaninezhad, M. R.: A simultaneous perturbation stochastic approximation algorithm for coupled well placement and control optimization under geologic uncertainty. Comput. Geosci 17, 167–188 (2013)CrossRefGoogle Scholar
  31. 31.
    Martínez, J. L., Gonzalo, E. G.: The generalized PSO: a new door to PSO evolution, Vol. 5 (2008)Google Scholar
  32. 32.
    Martínez, J. F., Gonzalo, E. G.: The PSO family: deduction, stochastic analysis and comparison. Swarm Intell 3(4), 245–273 (2009)CrossRefGoogle Scholar
  33. 33.
    Mattax, C. C., Dalton, R. L.: Reservoir simulation. In SPE Monograph Series, volume 13. Richardson, Texas (1990)Google Scholar
  34. 34.
    McCain, W. D.: The properties of petroleum fluids. Petroleum Publishing Co., Tulsa (1973)Google Scholar
  35. 35.
    Mendes, R., Kennedy, J., Neves, J.: Watch thy neighbor or how the swarm can learn from its environmentProceedings of Swarm Intelligence Symposium in the 2003 IEEE, pp. 88–94 (2003)Google Scholar
  36. 36.
    Le Ravalec-Dupin, M., Da Veiga, S.: Cosimulation as a perturbation method for calibrating porosity and permeability fields to dynamic data. Comput. Geosci 37, 1400–1412 (2011)CrossRefGoogle Scholar
  37. 37.
    Montes, G., Bartolome, P., Udias, A. L.: The use of genetic algorithms in well placement optimizationSPE Latin American and Caribbean Petroleum Engineering Conference, SPE 69439 (2001)Google Scholar
  38. 38.
    Morales, A., Nasrabadi, H., Zhu, D.: A modified genetic algorithm for horizontal well placement optimization in gas condensate reservoirsSPE Annual Technical Conference and exhibition, SPE 135182 (2010)Google Scholar
  39. 39.
    Nwankwor, E., Nagar, A. K., Reid, D. C.: Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput. Geosci 17, 249–268 (2013)CrossRefGoogle Scholar
  40. 40.
    Onwunalu, J.: Optimization of nonconventional well placement using genetical gorithms and statistical proxy. Stanford University, MSc thesis (2006)Google Scholar
  41. 41.
    Onwunalu, J., Durlofsky, L. J.: Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput. Geosci 14(1), 183–198 (2010)CrossRefGoogle Scholar
  42. 42.
    Peaceman, D. W.: Fundamentals of numerical reservoir simulation. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, first edition (1997)Google Scholar
  43. 43.
    Civicioglu, P.: Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput. Geosci 46, 229–247 (2012)CrossRefGoogle Scholar
  44. 44.
    Shi, Y. H., Eberhart, R. C.: A modified particle swarm optimizerProceedings of the 1998 IEEE International Conference on Evolutionary Computation, New York, pp. 69–73 (1998)Google Scholar
  45. 45.
    Shi, Y. H., Eberhart, R. C.: Empirical study of particle swarm optimizationProceeding of Congress on Evolutionary Computation, Piscataway, NJ: IEEE Service Center, pp. 1945–1949 (1999)Google Scholar
  46. 46.
    Shi, Y. H., Eberhart, R. C.: Fuzzy adaptive particle swarm optimizationProceedings of the Congress on Evolutionary Computation, Seoul, Korea, pp.101–106 (2001)Google Scholar
  47. 47.
    Túpac, Y. J., Faletti, L., Pacheco, M. A. C., Vellasco, M. M. B. R.: Evolutionary optimization of oil field developmentSPE Digital Energy Conference and Exhibition, SPE 107552 (2007)Google Scholar
  48. 48.
    Vesselinov, V. V., Harp, D. R.: Adaptive hybrid optimization strategy for calibration and parameter estimation of physical process models. Comput. Geosci 49, 10–20 (2012)CrossRefGoogle Scholar
  49. 49.
    Yeten, B.: Optimum deployment of nonconventional wells. Stanford University, PhD thesis (2003)Google Scholar
  50. 50.
    Yeten, B., Durlofsky, L. J., Aziz, K.: Optimization of nonconventional well type, location and trajectory. SPE J 8(3), 200–210 (2003)CrossRefGoogle Scholar
  51. 51.
    Zhou, H.: Research on k-medoids clustering algorithm based on adaptive particle swarm optimization algorithm. Changsha University of Science and Technology, B. E. thesis (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shuaiwei Ding
    • 1
    Email author
  • Hanqiao Jiang
    • 1
  • Junjian Li
    • 1
  • Guoping Tang
    • 1
  1. 1.Key Laboratory of Petroleum Engineering of the Ministry of EducationChina University of PetroleumBeijingChina

Personalised recommendations