Advertisement

Computational Geosciences

, Volume 18, Issue 3–4, pp 357–372 | Cite as

Grid adaptation for the Dirichlet–Neumann representation method and the multiscale mixed finite-element method

  • Knut-Andreas LieEmail author
  • Jostein R. Natvig
  • Stein Krogstad
  • Yahan Yang
  • Xiao-Hui Wu
ORIGINAL PAPER

Abstract

A Dirichlet–Neumann representation method was recently proposed for upscaling and simulating flow in reservoirs. The DNR method expresses coarse fluxes as linear functions of multiple pressure values along the boundary and at the center of each coarse block. The number of flux and pressure values at the boundary can be adjusted to improve the accuracy of simulation results and, in particular, to resolve important fine-scale details. Improvement over existing approaches is substantial especially for reservoirs that contain high-permeability streaks or channels. As an alternative, the multiscale mixed finite-element (MsMFE) method was designed to obtain fine-scale fluxes at the cost of solving a coarsened problem, but can also be used as upscaling methods that are flexible with respect to geometry and topology of the coarsened grid. Both methods can be expressed in mixed-hybrid form, with local stiffness matrices obtained as “inner products” of numerically computed basis functions with fine-scale sub-resolution. These basis functions are determined by solving local flow problems with piecewise linear Dirichlet boundary conditions for the DNR method and piecewise constant Neumann conditions for MsMFE. Adding discrete pressure points in the DNR method corresponds to subdividing faces in the coarse grid and hence increasing the number of basis functions in the MsMFE method. The methods show similar accuracy for 2D Cartesian cases, but the MsMFE method is more straightforward to formulate in 3D and implement for general grids.

Keywords

Coarsening Upscaling Dirichlet–Neumann representation Multiscale mixed finite elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarnes, J., Lie, K.A.: Toward reservoir simulation on geological grid models. In: Proceedings of the 9th European conference on the mathematics of oil recovery. EAGE, Cannes, France (2004)Google Scholar
  2. 2.
    Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2(3), 421–439 (2004). doi: 10.1137/030600655 CrossRefGoogle Scholar
  3. 3.
    Aarnes, J.E., Kippe, V., Lie, K.A.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water Resour. 28(3), 257–271 (2005). doi: 10.1016/j.advwatres.2004.10.007 CrossRefGoogle Scholar
  4. 4.
    Aarnes, J.E., Krogstad, S., Lie, K.A.: A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul. 5(2), 337–363 (2006). doi: 10.1137/050634566 CrossRefGoogle Scholar
  5. 5.
    Aarnes, J.E., Krogstad, S., Lie, K.A.: Multiscale mixed/mimetic methods on corner-point grids. Comput. Geosci. 12(3), 297–315 (2008). doi: 10.1007/s10596-007-9072-8 CrossRefGoogle Scholar
  6. 6.
    Arbogast, T.: Homogenization-based mixed multiscale finite elements for problems with anisotropy. Multiscale Model. Simul. 9(2), 624–653 (2011). doi: 10.1137/100788677 CrossRefGoogle Scholar
  7. 7.
    Chen, Z., Hou, T.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp. 72, 541–576 (2003). doi: 10.1090/S0025-5718-02-01441-2 CrossRefGoogle Scholar
  8. 8.
    Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reservoir Eval. Eng. 4, 308–317 (2001). http://www.spe.org/csp/ CrossRefGoogle Scholar
  9. 9.
    Hauge, V.L.: Multiscale methods and flow-based gridding for flow and transport in porous media. Ph.D. thesis, Norwegian University of Science and Technology (2010). http://ntnu.diva-portal.org/smash/get/diva2:400507/FULLTEXT02
  10. 10.
    Hauge, V.L., Lie, K.A., Natvig, J.R.: Flow-based coarsening for multiscale simulation of transport in porous media. Comput. Geosci. 16(2), 391–408 (2012). doi: 10.1007/s10596-011-9230-x CrossRefGoogle Scholar
  11. 11.
    Høyland, A.G.: Multiscale methods in reservoir simulation. Master’s thesis, University of Bergen (2012)Google Scholar
  12. 12.
    Jenny, P., Lee, S.H., Tchelepi, H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003). doi: 10.1016/S0021-9991(03)00075-5 CrossRefGoogle Scholar
  13. 13.
    Kippe, V., Aarnes, J.E., Lie, K.A.: A comparison of multiscale methods for elliptic problems in porous media flow. Comput. Geosci. 12(3), 377–398 (2008). doi: 10.1007/s10596-007-9074-6 CrossRefGoogle Scholar
  14. 14.
    Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012). doi: 10.1007/s10596-011-9244-4 CrossRefGoogle Scholar
  15. 15.
    Karypis Lab: Metis— serial graph partitioning and fill-reducing matrix ordering. http://glaros.dtc.umn.edu/gkhome/views/metis (2012). Accessed 30 Dec 2013
  16. 16.
    SINTEF: The MATLAB Reservoir Simulation Toolbox, version 2011b. http://www.sintef.no/MRST/ (2012). Accessed 30 Dec 2013
  17. 17.
    Natvig, J.R., Lie, K.A., Krogstad, S., Yang, Y., Wu, X.H.: Grid adaption for upscaling and multiscale methods. In: Proceedings of ECMOR XIII–13th European conference on the mathematics of oil recovery. EAGE, Biarritz, France (2012)Google Scholar
  18. 18.
    Natvig, J.R., Skaflestad, B., Bratvedt, F., Bratvedt, K., Lie, K.A., Laptev, V., Khataniar, S.K.: Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs. SPE J. 16(4) (2011). doi: 10.2018/119132-PA
  19. 19.
    Nilsen, H.M., Lie, K.A., Natvig, J.R.: Accurate modelling of faults by multipoint, mimetic, and mixed methods. SPE J. 17(2), 568–579 (2012). doi: 10.2118/149690-PA CrossRefGoogle Scholar
  20. 20.
    Yang, Y., Li, D., Parashkevov, R., Wu, X.H.: A Dirichlet Neumann representation method for simulating flows in reservoirs. In: 2011 SPE reservoir simulation symposium, The Woodlands, Texas, USA, 21–23 February 2011 (2011). doi: 10.2118/141512-MS

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Knut-Andreas Lie
    • 1
    Email author
  • Jostein R. Natvig
    • 1
    • 2
  • Stein Krogstad
    • 1
  • Yahan Yang
    • 3
  • Xiao-Hui Wu
    • 3
  1. 1.SINTEF ICTOsloNorway
  2. 2.Schlumberger Information SolutionsOsloNorway
  3. 3.ExxonMobil Upstream Research CompanyHoustonUSA

Personalised recommendations