Computational Geosciences

, Volume 18, Issue 5, pp 613–624 | Cite as

Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method

  • Benjamin Ganis
  • Mark E. Mear
  • A. Sakhaee-Pour
  • Mary F. Wheeler
  • Thomas Wick
ORIGINAL PAPER

Abstract

We describe an algorithm for modeling saturated fractures in a poroelastic domain in which the reservoir simulator is coupled with a boundary element method. A fixed stress splitting is used on the underlying fractured Biot system to iteratively couple fluid and solid mechanics systems. The fluid system consists of Darcy’s law in the reservoir and is computed with a multipoint flux mixed finite element method, and a Reynolds’ lubrication equation in the fracture solved with a mimetic finite difference method. The mechanics system consists of linear elasticity in the reservoir and is computed with a continuous Galerkin method, and linear elasticity in the fracture is solved with a weakly singular symmetric Galerkin boundary element method. This algorithm is able to compute both unknown fracture width and unknown fluid leakage rate. An interesting numerical example is presented with an injection well inside of a circular fracture.

Keywords

Saturated fracture Poroelasticity Multipoint flux mixed finite element Mimetic finite difference Galerkin finite element Boundary element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, J., Siebrits, E., Peirce, A., Desroches, J.: Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44(5), 739–757 (2007)CrossRefGoogle Scholar
  2. 2.
    Al-Hinai, O., Singh, G., Almani, T., Pencheva, G., Wheeler, M.F.: Modeling multiphase flow with nonplanar fractures. In: 2013 SPE Reservoir Simulation Symposium. Texas, The Woodlands. SPE-163605 (2013)Google Scholar
  3. 3.
    Bishop, J., Martinez, M., Newell, P.: A finite-element method for modeling fluid-Pressure induced discrete-fracture propagation using random meshes. In: American Rock Mechanics Association, Chicago. ARMA 12–190 (2012)Google Scholar
  4. 4.
    Bourdin, B., Chukwudozie, C., Yoshioka, K.: A variational approach to the numerical simulation of hydraulic fracturing. SPE PP 146951 (2012)Google Scholar
  5. 5.
    Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed elements for second order elliptic problems. Numer. Math. 88, 217–235 (1985)CrossRefGoogle Scholar
  6. 6.
    Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)CrossRefGoogle Scholar
  7. 7.
    Carrier, B., Granet, S.: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng. Fract. Mech. 79, 312–328 (2012)CrossRefGoogle Scholar
  8. 8.
    Carter, R.D.: Derivation of the General Equation for Estimating the Extent of the Fractured AreaDrilling and Production Practice. API, New York (1957)Google Scholar
  9. 9.
    Ciarlet, P.G.: The Finite Element Method For Elliptic Problems. North-Holland, Amsterdam (1987)Google Scholar
  10. 10.
    Program Development Company. GridPro mesh generation software. http://www.gridpro.com (2013) Accessed 12 July 2013
  11. 11.
    Dean, R., Schmidt, J.: Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator. SPE J. 14(4), 707–714 (2009)CrossRefGoogle Scholar
  12. 12.
    Ganis, B., Girault, V., Mear, M.E., Singh, G., Wheeler, M.F.: Modeling fractures in a poro-elastic medium. In: Technical Report ICES Report 13-09. The University of Texas, Austin (2013)Google Scholar
  13. 13.
    Ingram, R., Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48(4), 1281–1312 (2010)CrossRefGoogle Scholar
  14. 14.
    Irzal, F., Remmers, J., Huyghe, J.M., de Borst, R.: A large deformation formulation for fluid flow in a progressively fracturing porous material. Comput. Methods Appl. Mech. Eng. 256, 29–37 (2013)CrossRefGoogle Scholar
  15. 15.
    Jaffré, J., Mnejja, M., Roberts, J.E.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011)CrossRefGoogle Scholar
  16. 16.
    Ji, L., Settari, A., Sullivan, R.: A novel hydraulic fracturing model fully coupled with geomechanics and reservoir simulation. SPE J. 14(3), 423–430 (2009)CrossRefGoogle Scholar
  17. 17.
    Johns, R., Sepehrnoori, K., Varavei, A., Moinfar, A.: Development of a coupled dual continuum and discrete fracture model for the simulation of unconventional reservoirs. In: 2013 SPE Reservoir Simulation Symposium (2013)Google Scholar
  18. 18.
    Keat, W.D., Annigeri, B.S., Cleary, M.P.: Surface integral and finite element hybrid method for two-and three-dimensional fracture mechanics analysis. Int. J. Fract. 36(1), 35–53 (1988)Google Scholar
  19. 19.
    Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Iterative solvers of the implicit parallel accurate reservoir simulator (IPARS). I: Single processor case. In: Technical Report 00-28, TICAM. University of Texas, Austin (2000)Google Scholar
  20. 20.
    Latham, J.-P., Xiang, J., Belayneh, M., Nick, H.M., Tsang, C.-F., Blunt, M.J.: Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int. J. Rock Mech. Min. Sci. 57, 100–112 (2012)Google Scholar
  21. 21.
    Lecampion, B., Detournay, E.: An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag. Comput. Methods Appl. Mech. Engrg. 196, 4863–4880 (2007)CrossRefGoogle Scholar
  22. 22.
    Li, S., Mear, M.E.: Singularity-reduced integral equations for displacement discontinuities in three-dimensional linear elastic media. Int. J. Fract. 93(1–4), 87–114 (1998)CrossRefGoogle Scholar
  23. 23.
    Li, S., Mear, M.E., Xiao, L.: Symmetric weak-form integral equation method for three-dimensional fracture analysis. Comput. Methods Appl. Mech. Eng. 151(3), 435–459 (1998)CrossRefGoogle Scholar
  24. 24.
    Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 1–7 (2012)Google Scholar
  25. 25.
    Nikishkov, G.P., Park, J.H., Atluri, S.N.: SGBEM-FEM alternating method for analyzing 3D non-planar cracks and their growth in structural components. Comput. Model. Eng. Sci. 2(3), 401–422 (2001)Google Scholar
  26. 26.
    Olson, J.E.: Multi-fracture propagation modeling: applications to hydraulic fracturing in shales and tight gas sands. In: The 42nd US Rock Mechanics Symposium (USRMS) (2008)Google Scholar
  27. 27.
    Rungamornrat, J., Mear, M.E.: SGBEM-FEM coupling for analysis of cracks in 3D anisotropic media. Int. J. Numer. Methods Eng. 86(2), 224–248 (2011)CrossRefGoogle Scholar
  28. 28.
    Rungamornrat, J., Wheeler, M.F., Mear, M.E.: A numerical technique for simulating nonplanar evolution of hydraulic fractures. SPE 96968, 2005 (2005)Google Scholar
  29. 29.
    Schrefler, B.A., Secchi, S., Simoni, L.: On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput. Methods Appl. Engrg. 195, 444–461 (2006)CrossRefGoogle Scholar
  30. 30.
    Vassilevski, Y.V.: Iterative Solvers for the Implicit Parallel Accurate Reservoir Simulator (IPARS). II: parallelization issues. In: Technical Report 00-33, TICAM. University of Texas, Austin (2000)Google Scholar
  31. 31.
    Wheeler, M.F., Xue, G., Yotov, I.: Accurate cell-centered discretizations for modeling multiphase flow in porous media on general hexahedral and simplicial grids. In: SPE Reservoir Simulation Symposium. The Woodlands, Texas. SPE 141534 (2011)Google Scholar
  32. 32.
    Youngquist, W., Duncan, R.C.: North american natural gas: data show supply problems. Nat. Resour. Res 12(4), 229–240 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Benjamin Ganis
    • 1
  • Mark E. Mear
    • 1
  • A. Sakhaee-Pour
    • 1
  • Mary F. Wheeler
    • 1
  • Thomas Wick
    • 1
  1. 1.Center for Subsurface Modeling, Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations