Advertisement

Computational Geosciences

, Volume 18, Issue 5, pp 883–895 | Cite as

Poro-viscoelasticity modelling based on upscaling quasistatic fluid-saturated solids

  • Eduard RohanEmail author
  • Simon Shaw
  • John R. Whiteman
Original Paper

Abstract

In this paper, quasistatic models are developed for the slow flow of compressible fluids through porous solids, where the solid exhibits fading memory viscoelasticity. Problems of this type are important in practical geomechanics contexts, for example, in the context of fluid flow through unconsolidated reservoir sands and of wellbore deformation behaviour in gas and oil shale reservoirs, all of which have been studied extensively. For slow viscous fluid flow in the poro-viscoelastic media we are able to neglect the dynamic effects related to inertia forces, as well as the dissipation associated with the viscous flows. This is in contrast to the vast body of work in the poro-elastic context, where much faster flow of the viscous fluids may give rise to memory effects associated with microflows in pores of the solid media. Such problems have been treated extensively in both the dynamic and quasistatic cases. We are taking a specific type of the porous medium subject to slow deformation processes possibly inducing moderate pressure gradients and flow rates characterised by negligible inertia effects. As the result of homogenisation of such a two-phase medium, we observe the fading memory behaviour in the Biot modulus which controls the pressure increase due to skeleton macroscopic deformation and pore fluid content. Although our derivation leads to a result which is consistent with the formal phenomenological approach proposed by Biot (J Appl Phys 23:1482–1498, 1962), we offer the reader more insight into the structure of the poro-viscoelastic constitutive relations obtained; in particular, we can show that the Biot compressibility evolves in time according to the creep function while the skeleton stiffness is driven by the relaxation function.

Keywords

Viscoelasticity Two-scale modelling Homogenisation Fluid-saturated porous media Biot model Perfusion Viscoelastic solid porous media Unconsolidated sands Wellbore deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abousleiman, Y.N., Cheng, A.H.-D., Roegiers, J.C.: Poroviscoelastic analysis of borehole and cylinder problems. Acta. Mech. 119, 199–219 (1996)CrossRefGoogle Scholar
  2. 2.
    Allaire, G.: Homogenization of the stokes flow in a connected porous medium. Asymptot. Anal. 2, 203–222 (1989)Google Scholar
  3. 3.
    Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)CrossRefGoogle Scholar
  4. 4.
    Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990)CrossRefGoogle Scholar
  5. 5.
    Auriault, J.-L., Boutin, C.: Deformable porous media with double porosity. Quasi-statics. II. Memory effects. Transp. Porous Media 10(2), 153–169 (1993)CrossRefGoogle Scholar
  6. 6.
    Auriault, J.-L., Boutin, C.: Deformable porous media with double porosity. III. Acoustics. Transp. Porous Media 14, 143–162 (1994)CrossRefGoogle Scholar
  7. 7.
    Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)CrossRefGoogle Scholar
  8. 8.
    Blasselle, A., Griso, G.: Mechanical modeling of the skin. Asymptot. Anal. 74, 167–198 (2011)Google Scholar
  9. 9.
    James Case: Recreating the great San Francisco earthquake. SIAM News 42(3), 1,8 (2009). (News journal of the Society for Industrial and Applied Mathematics)Google Scholar
  10. 10.
    Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40(4), 1585–1620 (2008)CrossRefGoogle Scholar
  11. 11.
    Clopeau, T., Ferrin, J.L., Gilbert, R.P., Mikelic, A.: Homogenizing the acoustic properties of the seabed: part II. Math. Comput. Model. 33, 821–841 (2001)CrossRefGoogle Scholar
  12. 12.
    Coussy, O.: Poromechanics. Wiley, New York (2004)Google Scholar
  13. 13.
    de Boer, R.: Theory of Porous Media. Springer, Berlin (2000)CrossRefGoogle Scholar
  14. 14.
    de Buhan, P., Chateau, X., Dormieux, L.: The constitutive equations of finite strain poroelasticity in the light of a micro-macro approach. Eur. J. Mech. A/Solids 17, 909–921 (1998)CrossRefGoogle Scholar
  15. 15.
    Dormieux, L., Molinari, A., Kondo, D.: Micromechanical approach to the behavior of poroelastic materials. J. Mech. Phys. Solids 50, 2203–2231 (2002)CrossRefGoogle Scholar
  16. 16.
    Ehlers, W., Bluhm, J.: Porous Media—Theory, Experiments and Numerical Applications. Springer, Berlin (2002)Google Scholar
  17. 17.
    Ehlers, W., Markert, B., Klar, O.: Biphasic description of viscoelastic foams by use of an extended Ogden-type formulation. In: Ehlers, W., Bluhm, J. (eds.) Porous Media—Theory, Experiments and Numerical Applications, pp. 275–294. Springer, Berlin (2002)Google Scholar
  18. 18.
    Ferrín, J.L., Mikelić, A.: Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluid. Math. Meth. Appl. Sci. 26, 831–859 (2003)CrossRefGoogle Scholar
  19. 19.
    Gilbert, R.P., Mikelić, A.: Homogenizing the acoustic properties of the seabed: part i. Nonlinear Anal. 40, 185–212 (2000)CrossRefGoogle Scholar
  20. 20.
    Golden, J.M., Graham, G.A.C.: Boundary Value Problems in Linear Viscoelasticity. Springer, Berlin (1988)CrossRefGoogle Scholar
  21. 21.
    Griso, G., Rohan, E.: On the homogenization of a diffusion-deformation problem in strongly heterogeneous media. Ricerche Mat. 56, 161–188 (2007)CrossRefGoogle Scholar
  22. 22.
    Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRefGoogle Scholar
  23. 23.
    Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15, 79–95 (1967)CrossRefGoogle Scholar
  24. 24.
    Hoag, S.K., Abousleiman, Y.N., Hemphill, T.: Poroviscoelastic modelling of time-dependent wellbore closure when drilling anisotropic gas shale and oil shale reservoirs—applications in the Haynesville Shale and the Colony Pilot Mine Shale. In: SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8–10 October 2012. Society of Petroleum Engineers SPE159942. (2012), doi: 10.2118/159942-MS
  25. 25.
    Hornung, U.: Homogenization and Porous Media. Springer, Berlin (1997)CrossRefGoogle Scholar
  26. 26.
    Lukeš, V., Rohan, E.: Microstructure based two-scale modelling of soft tissues. Math. Comput. Simul. 65(215), 1019–1037 (1996)CrossRefGoogle Scholar
  27. 27.
    Mielke, A., Rohan, E.: Homogenization of elastic waves in fluid-saturated porous media using the Biot model. Math. Models Meth. Appl. Sci. 23, 873–916 (2013)CrossRefGoogle Scholar
  28. 28.
    Mikelić, A.: Mathematical derivation of the Darcy-type law with memory effects, governing transient flow through porous medium. Glas. Matematickij 29, 57–77 (1994)Google Scholar
  29. 29.
    Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Series in Applied Mathematics and Mechanics. North Holland, Amsterdam (1993)Google Scholar
  30. 30.
    Perić, D., de Souza Neto, E.A., Feijóo, R., Carneiro Molina, A.J.: On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. I. J. Num. Meth. Eng. 87, 149–170 (2010)Google Scholar
  31. 31.
    Rago, F.M., Ockuma, H., Sepehrnoori, K., Thompson, T.W.: Reservoir performance in viscoelastic porous media. J. Eng. Resour. Technol. 107, 527–533 (1985)CrossRefGoogle Scholar
  32. 32.
    Rohan, E.: Modelling large deformation induced microflow in soft biological tissues. Theor. Comp. Fluid Dyn. 20, 251–276 (2006)CrossRefGoogle Scholar
  33. 33.
    Rohan, E., Cimrman, R.: Two-scale modelling of tissue perfusion problem using homogenization of dual porous media. Int. J. Multiscale Comput. Eng. 8, 81–102 (2010)CrossRefGoogle Scholar
  34. 34.
    Rohan, E., Cimrman, R.: Multiscale FE simulation of diffusion-deformation processes in homogenized dual-porous media. Math. Comp. Simul. (2011). In PressGoogle Scholar
  35. 35.
    Rohan, E., Cimrman, R., Lukeš, V.: Numerical modelling and homogenized constitutive law of large deforming fluid saturated heterogeneous solids. Comput. Struct. 84, 1095–1114 (2006)CrossRefGoogle Scholar
  36. 36.
    Rohan, E., Lukeš, V.: Homogenization of perfusion in large-deforming medium using the updated Lagrangian formulation. In: Pallarés, R.B., Romero, M.L. (eds.) Proceedings of the Seventh International Conference on Engineering Computational Technology. Civil-Comp Press, Stirlingshire (2010)Google Scholar
  37. 37.
    Rohan, E., Naili, S., Cimrman, R., Lemaire, T.: Hierarchical homogenization of fluid saturated porous solid with multiple porosity scales. Comptes Rendus Mecanique 340, 688–694 (2012)CrossRefGoogle Scholar
  38. 38.
    Rohan, E., Naili, S., Cimrman, R., Lemaire, T.: Multiscale modelling of a fluid saturated medium with double porosity. Relevance to the compact bone. J. Mech. Phys. Solids 60, 857–881 (2012)CrossRefGoogle Scholar
  39. 39.
    Rohan, E., Shaw, S., Wheeler, M.F., Whiteman, J.R.: Mixed and Galerkin finite element approximation of flow in a linear viscoelastic porous medium. Comput. Methods Appl. Mech. Eng. 260, 78–91 (2013)CrossRefGoogle Scholar
  40. 40.
    Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Number 127 in Lecture Notes in Physics. Springer, Berlin (1980)Google Scholar
  41. 41.
    Showalter, R.E., Stefanelli, U.: Diffusion in poro-plastic media. Math. Meth. Appl. Sci. 27, 2131–2151 (2003)CrossRefGoogle Scholar
  42. 42.
    Showalter, R.E., Visarraga, D.B.: Double-diffusion models from a highly heterogeneous medium. J. Math. Anal. Appl. 295, 191–210 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.European Centre of Excellence, New Technologies for Information Society (NTIS), Faculty of Applied SciencesUniversity of West BohemiaPlzeňCzech Republic
  2. 2.BICOM, Institute of Computational MathematicsBrunel UniversityUxbridgeUK

Personalised recommendations