Computational Geosciences

, Volume 17, Issue 6, pp 899–911 | Cite as

A priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database

  • Justin Winokur
  • Patrick Conrad
  • Ihab Sraj
  • Omar Knio
  • Ashwanth Srinivasan
  • W. Carlisle Thacker
  • Youssef Marzouk
  • Mohamed Iskandarani
Original Paper

Abstract

This work explores the implementation of an adaptive strategy to design sparse ensembles of oceanic simulations suitable for constructing polynomial chaos surrogates. We use a recently developed pseudo-spectral algorithm that is based on a direct application of the Smolyak sparse grid formula and that allows the use of arbitrary admissible sparse grids. The adaptive algorithm is tested using an existing simulation database of the oceanic response to Hurricane Ivan in the Gulf of Mexico. The a priori tests demonstrate that sparse and adaptive pseudo-spectral constructions lead to substantial savings over isotropic sparse sampling in the present setting.

Keywords

Uncertainty quantification Polynomial chaos Sparse Smolyak quadrature Adaptive sampling Ocean modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Le Maitre, O.P., Knio, O.: Spectral Methods for Uncertainty Quantification: with Applications to Computational Fluid Dynamics. Springer Series in Scientific Computation. Springer, Dordrecht (2010)CrossRefGoogle Scholar
  2. 2.
    Balakrishnan, S., Roy, A., Ierapetritou, M.G., Flach, G.P., Georgopoulos, P.G.: Uncertainty reduction and characterization for complex environmental fate and transport models: an empirical bayesian framework incorporating the stochastic response surface method. Water Resour. Res. 39(12), 1350 (2003)Google Scholar
  3. 3.
    Isukapalli, S.S., Balakrishnan, S., Georgopoulos, P.G.: Computationally efficient uncertainty propagation and reduction using the stochastic response surface method. In: 43rd IEEE Conference on Decision and Control, 2004, CDC, vol. 2, pp. 2237–2243. IEEE (2004)Google Scholar
  4. 4.
    Marzouk, Y.M., Najm, H.N.: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228(6), 1862–1902 (2009)CrossRefGoogle Scholar
  5. 5.
    Crestaux, T. et al.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)CrossRefGoogle Scholar
  6. 6.
    Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)CrossRefGoogle Scholar
  7. 7.
    Thacker, W.C., Srinivasan, A., Iskandarani, M., Knio, O.M., Le Henaff, M.: Propagating boundary uncertainties using polynomial expansions. Ocean Model. 43–44, 52–63 (2012)CrossRefGoogle Scholar
  8. 8.
    Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W.C., Knio, O.M.: Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput. Geosci. 16(3), 1–22 (2012)Google Scholar
  9. 9.
    Sraj, I., Iskandarani, M., Srinivasan, A., Thacker, W.C., Winokur, J., Alexanderian, A., Lee, C.-Y., Chen, S.S., Knio, O.M.: Bayesian inference of drag parameters using Fanapi AXBT data. Mon. Wea. Rev. (2013). doi:10.1175/MWR-D-12-00228.1 Google Scholar
  10. 10.
    Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Dover, Mineola (2003)Google Scholar
  11. 11.
    Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18(3–4), 209–232 (1998)CrossRefGoogle Scholar
  12. 12.
    Petras, K.: On the smolyak cubature error for analytic functions. Adv. Comput. Math. 12, 71–93 (2000)CrossRefGoogle Scholar
  13. 13.
    Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4(240–243), 123 (1963)Google Scholar
  14. 14.
    Constantine, P.G., Eldred, M.S., Phipps, E.T.: Sparse pseudospectral approximation method. Comput. Methods Appl. Mech. Eng. 229–232, 1–12 (2012)CrossRefGoogle Scholar
  15. 15.
    Conrad, P.R., Marzouk, Y.M.: Adaptive Smolyak pseudospectral approximations. Submitted: CoRR, abs/1209.1406 (2012)Google Scholar
  16. 16.
    Xiu, D.B., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)CrossRefGoogle Scholar
  17. 17.
    Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224, 560–586 (2007)CrossRefGoogle Scholar
  18. 18.
    Patterson, T.N.L.: The optimum addition of points to quadrature formulae. Math. Comput. 22, 847–856 (1968)CrossRefGoogle Scholar
  19. 19.
    Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)CrossRefGoogle Scholar
  20. 20.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Justin Winokur
    • 1
  • Patrick Conrad
    • 2
  • Ihab Sraj
    • 1
  • Omar Knio
    • 1
  • Ashwanth Srinivasan
    • 3
  • W. Carlisle Thacker
    • 4
    • 5
  • Youssef Marzouk
    • 2
  • Mohamed Iskandarani
    • 1
  1. 1.Department of Mechanical Engineeringand Materials ScienceDuke UniversityDurhamUSA
  2. 2.Department of Aeronautics and AstronauticsMassachusetts Insitute of TechnologyCambridgeUSA
  3. 3.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  4. 4.Cooperative Institute of Marine and Atmospheric SciencesMiamiUSA
  5. 5.Atlantic Oceanographic and Meteorological LaboratoryMiamiUSA

Personalised recommendations