Computational Geosciences

, Volume 17, Issue 5, pp 789–812 | Cite as

A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows

Original Paper

Abstract

This paper develops a general abstract framework for a posteriori estimates for immiscible incompressible two-phase flows in porous media. We measure the error by the dual norm of the residual and, for mathematical correctness, employ the concept of global and complementary pressures in the analysis. Our estimators allow to estimate separately the different error components, namely, the spatial discretization error, the temporal discretization error, the linearization error, the iterative coupling error, and the algebraic solver error. We propose an adaptive algorithm wherein the different iterative procedures (iterative linearization, iterative coupling, iterative solution of linear systems) are stopped when the corresponding errors do not affect significantly the overall error and wherein the spatial and temporal errors are equilibrated. Consequently, important computational savings can be achieved while guaranteeing a user-given precision. The developed framework covers fully implicit, implicit pressure–explicit saturation, or iterative coupling formulations; conforming spatial discretization schemes such as the vertex-centered finite volume method or the finite element method and nonconforming spatial discretization schemes such as the cell-centered finite volume method, the mixed finite element method, or the discontinuous Galerkin method; linearizations such as the Newton or the fixed-point one; and general linear solvers. Numerical experiments for a model problem are presented to illustrate the theoretical results. Only by stopping timely the linear and nonlinear solvers, speedups by a factor between 10 and 20 in terms of the number of total linear solver iterations are achieved.

Keywords

Two-phase flow A posteriori error estimate General framework Discretization error Linearization error Iterative coupling error Algebraic solver error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achdou, Y., Bernardi, C., Coquel, F.: A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96(1), 17–42 (2003). doi:10.1007/s00211-002-0436-7 CrossRefGoogle Scholar
  2. 2.
    Ainsworth, M.: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45(4), 1777–1798 (2007). doi:10.1137/060665993 CrossRefGoogle Scholar
  3. 3.
    Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983). doi:10.1007/BF01176474 CrossRefGoogle Scholar
  4. 4.
    Amaziane, B., Jurak, M., Žgaljić Keko, A.: An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media. J. Differ. Equ. 250(3), 1685–1718 (2011). doi:10.1016/j.jde.2010.09.008 CrossRefGoogle Scholar
  5. 5.
    Angermann, L.: Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems. Computing 55(4), 305–323 (1995). doi:10.1137/060665993 CrossRefGoogle Scholar
  6. 6.
    Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary value problems in mechanics of nonhomogeneous fluids. In: Studies in Mathematics and Its Applications, vol. 22. North-Holland, Amsterdam (1990)Google Scholar
  7. 7.
    Arbogast, T.: The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow. Nonlinear Anal. 19(11), 1009–1031 (1992). doi:10.1016/0362-546X(92)90121-T CrossRefGoogle Scholar
  8. 8.
    Arbogast, T., Juntunen, M., Pool, J., Wheeler, M.F.: A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure (2012). http://users.tkk.fi/mojuntun/preprints/pcjump.pdf. Aalto University, Department of Mathematics and Systems Analysis, Preprint 2012/4/16
  9. 9.
    Arbogast, T., Wheeler, M.F., Zhang, N.Y.: A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33(4), 1669–1687 (1996). doi:10.1137/S0036142994266728 CrossRefGoogle Scholar
  10. 10.
    Arioli, M., Loghin, D., Wathen, A.J.: Stopping criteria for iterations in finite element methods. Numer. Math. 99(3), 381–410 (2005). doi:10.1007/s00211-004-0568-z CrossRefGoogle Scholar
  11. 11.
    Bank, R.E., Rose, D.J.: Analysis of a multilevel iterative method for nonlinear finite element equations. Math. Comp. 39(160), 453–465 (1982). doi:10.2307/2007324 CrossRefGoogle Scholar
  12. 12.
    Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen. 22(4), 751–756 (2003). doi:10.4171/ZAA/1170 CrossRefGoogle Scholar
  13. 13.
    Becker, R., Johnson, C., Rannacher, R.: Adaptive error control for multigrid finite element methods. Computing 55(4), 271–288 (1995). doi:10.1007/BF02238483 CrossRefGoogle Scholar
  14. 14.
    Braess, D., Schöberl, J: Equilibrated residual error estimator for edge elements. Math. Comp. 77(262), 651–672 (2008). doi:10.1090/S0025-5718-07-02080-7 CrossRefGoogle Scholar
  15. 15.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15. Springer, New York. (1991). doi:10.1007/978-1-4612-3172-1 Google Scholar
  16. 16.
    Brooks, R.J., Corey, A.T.: Hydraulic properties of porous media. In: Hydrology Paper, vol. 3. Colorado State University, Fort Collins (1964)Google Scholar
  17. 17.
    Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton–Krylov algorithms. SIAM J. Optim. 4(2), 297–330 (1994). doi:10.1137/0804017 CrossRefGoogle Scholar
  18. 18.
    Cancès, C., Gallouët, T., Porretta, A.: Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces and Free Boundaries 11(2), 239–258 (2009). doi:10.4171/IFB/210 CrossRefGoogle Scholar
  19. 19.
    Cancès, C., Pop, I.S., Vohralík, M.: An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow. Math. Comp. (2013). doi:10.1090/S0025-5718-2013-02723-8
  20. 20.
    Chaillou, A.L., Suri, M.: Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Eng. 196(1–3), 210–224 (2006). doi:10.1016/j.cma.2006.03.008 CrossRefGoogle Scholar
  21. 21.
    Chavent, G., Jaffré, J.: Mathematical models and finite elements for reservoir simulation. In: Studies in Mathematics and Its Applications, vol. 17. North-Holland, Amsterdam (1986)Google Scholar
  22. 22.
    Chen, Y., Liu, W.: A posteriori error estimates of mixed methods for miscible displacement problems. Int. J. Numer. Methods Eng. 73(3), 331–343 (2008). doi:10.1002/nme.2075 CrossRefGoogle Scholar
  23. 23.
    Chen, Z.: Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution. J. Differ. Equ. 171(2), 203–232 (2001). doi:10.1006/jdeq.2000.3848 CrossRefGoogle Scholar
  24. 24.
    Chen, Z: Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization. J. Differ. Equ. 186(2), 345–376 (2002). doi:10.1016/S0022-0396(02)00027-X CrossRefGoogle Scholar
  25. 25.
    Chen, Z., Ewing, R.E.: Degenerate two-phase incompressible flow. III. Sharp error estimates. Numer. Math. 90(2), 215–240 (2001). doi:10.1007/s002110100291 CrossRefGoogle Scholar
  26. 26.
    Chen, Z., Ewing, R.E.: Degenerate two-phase incompressible flow. IV. Local refinement and domain decomposition. J. Sci. Comput. 18(3), 2003. doi:10.1023/A:1022673427893
  27. 27.
    Chueh, C.C., Secanell, M., Bangerth, W., Djilali, N.: Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media. Comput. Fluids. 39(9), 1585–1596 (2010). doi:10.1016/j.compfluid.2010.05.011 CrossRefGoogle Scholar
  28. 28.
    Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comp. 68(228), 1379–1396 (1999). doi:10.1090/S0025-5718-99-01093-5 CrossRefGoogle Scholar
  29. 29.
    Deuflhard, P.: Newton methods for nonlinear problems: affine invariance and adaptive algorithms. In: Springer Series in Computational Mathematics, vol. 35. Springer, Berlin (2004)Google Scholar
  30. 30.
    Deuflhard, P., Weiser, M.: Global inexact Newton multilevel FEM for nonlinear elliptic problems.In: Multigrid Methods V. (Stuttgart, 1996), Lecture Notes in Computational Science and Engineering, vol. 3, pp. 71–89. Springer, Berlin (1998). doi:10.1007/978-3-642-58734-4_4 Google Scholar
  31. 31.
    Di Pietro, D.A., Vohralík, M., Widmer, C.: An a posteriori error estimator for a finite volume discretization of the two-phase flow. In: Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F. (eds.) Finite Volumes for Complex Applications. VI Problems and Perspectives, pp. 341–349. Springer, Berlin (2011). doi:10.1007/978-3-642-20671-9_85 CrossRefGoogle Scholar
  32. 32.
    Dolejší, V., Ern, A., Vohralík, M.: A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems. SIAM J. Numer. Anal. 51(2), 773–793 (2013). doi:10.1137/110859282 CrossRefGoogle Scholar
  33. 33.
    Douglas Jr, J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numér. 17(1), 17–33 (1983)Google Scholar
  34. 34.
    van Duijn, C.J., Mikelić, A., Pop, I.S.: Effective equations for two-phase flow with trapping on the micro scale. SIAM J. Appl. Math. 62(5), 1531–1568 (2002). doi:10.1137/S0036139901385564 CrossRefGoogle Scholar
  35. 35.
    Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4(2), 393–422 (1994). doi:10.1137/0804022 CrossRefGoogle Scholar
  36. 36.
    Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996). Special issue on iterative methods in numerical linear algebra (Breckenridge, CO, 1994). doi:10.1137/0917003 CrossRefGoogle Scholar
  37. 37.
    El Alaoui, L., Ern, A., Vohralík, M.: Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Eng. 200(37–40), 2782–2795 (2011). doi:10.1016/j.cma.2010.03.024 CrossRefGoogle Scholar
  38. 38.
    Epshteyn, Y., Rivière, B.: Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow. J. Comput. Appl. Math. 225(2), 487–509 (2009). doi:10.1016/j.cam.2008.08.026 CrossRefGoogle Scholar
  39. 39.
    Ern, A., Mozolevski, I., Schuh, L.: Accurate velocity reconstruction for discontinuous Galerkin approximations of two-phase porous media flows. C. R. Math. Acad. Sci. Paris. 347(9–10), 551–554 (2009). doi:10.1016/j.crma.2009.02.011 CrossRefGoogle Scholar
  40. 40.
    Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199(23–24), 1491–1501 (2010). doi:10.1016/j.cma.2009.12.014 CrossRefGoogle Scholar
  41. 41.
    Ern, A., Nicaise, S., Vohralík, M.: An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris. 345(12), 709–712 (2007). doi:10.1016/j.crma.2007.10.036 CrossRefGoogle Scholar
  42. 42.
    Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM J. Numer. Anal. 48(1), 198–223 (2010). doi:10.1137/090759008 CrossRefGoogle Scholar
  43. 43.
    Ern, A., Vohralík, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013). doi:10.1137/120896918 Google Scholar
  44. 44.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume approximation of elliptic problems and convergence of an approximate gradient. Appl. Numer. Math. 37(1–2), 31–53 (2001). doi:10.1016/S0168-9274(00)00024-6 CrossRefGoogle Scholar
  45. 45.
    Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. M2AN Math. Model. Numer. Anal. 37(6), 937–972 (2003). doi:10.1051/m2an:2003062 CrossRefGoogle Scholar
  46. 46.
    Han, W.: A posteriori error analysis for linearization of nonlinear elliptic problems and their discretizations. Math. Methods Appl. Sci. 17(7), 487–508 (1994). doi:10.1002/mma.1670170702 CrossRefGoogle Scholar
  47. 47.
    Hilhorst, D., Vohralík, M.: A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids. Comput. Methods Appl. Mech. Eng. 200(5–8), 597–613 (2011). doi:10.1016/j.cma.2010.08.017 CrossRefGoogle Scholar
  48. 48.
    Huber, R., Helmig, R.: Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media. Comput. Geosci. 4(2), 141–164 (2000). doi:10.1023/A:1011559916309 CrossRefGoogle Scholar
  49. 49.
    Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010). doi:10.1137/08073706X CrossRefGoogle Scholar
  50. 50.
    Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003). doi:10.1137/S0036142902405217 CrossRefGoogle Scholar
  51. 51.
    Khalil, Z., Saad, M.: Degenerate two-phase compressible immiscible flow in porous media: the case where the density of each phase depends on its own pressure. Math. Comput. Simul. 81(10), 2225–2233 (2011). doi:10.1016/j.matcom.2010.12.012 CrossRefGoogle Scholar
  52. 52.
    Kim, K.Y.: A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57(9), 1065–1080 (2007). doi:10.1016/j.apnum.2006.09.010 CrossRefGoogle Scholar
  53. 53.
    Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 196(1–3), 404–419 (2006). doi:10.1016/j.cma.2006.05.007 CrossRefGoogle Scholar
  54. 54.
    Kröner, D., Luckhaus, S.: Flow of oil and water in a porous medium. J. Diff. Equat. 55(2), 276–288 (1984). doi:10.1016/0022-0396(84)90084-6 CrossRefGoogle Scholar
  55. 55.
    Lacroix, S., Vassilevski, Y.V., Wheeler, J., Wheeler, M.F.: Iterative solution methods for modeling multiphase flow in porous media fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926 (2003). doi:10.1137/S106482750240443X CrossRefGoogle Scholar
  56. 56.
    Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numer. Linear Algebra Appl. 8(8), 537–549 (2001). Solution methods for large-scale non-linear problems (Pleasanton, CA, 2000). doi:10.1002/nla.264. Solution methods for large-scale non-linear problems (Pleasanton, CA, 2000)CrossRefGoogle Scholar
  57. 57.
    Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004). doi:10.1137/S0036142903433790 CrossRefGoogle Scholar
  58. 58.
    Makridakis, C., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41(4), 1585–1594 (2003). doi:10.1137/S0036142902406314 CrossRefGoogle Scholar
  59. 59.
    Moret, I.: A Kantorovich-type theorem for inexact Newton methods. Numer. Funct. Anal. Optim. 10(3–4), 351–365 (1989). doi:10.1080/01630568908816307 CrossRefGoogle Scholar
  60. 60.
    Otto, F.: L 1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131(1), 20–38 (1996). doi:10.1006/jdeq.1996.0155 CrossRefGoogle Scholar
  61. 61.
    Patera, A.T., Rønquist, E.M.: A general output bound result: application to discretization and iteration error estimation and control. Math. Models Methods Appl. Sci. 11(4), 685–712 (2001). doi:10.1142/S0218202501001057 CrossRefGoogle Scholar
  62. 62.
    Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960)CrossRefGoogle Scholar
  63. 63.
    Peszyńska, M., Wheeler, M.F., Yotov, I.: Mortar upscaling for multiphase flow in porous media. Comput. Geosci. 6(1), 73–100 (2002). doi:10.1023/A:1016529113809 CrossRefGoogle Scholar
  64. 64.
    Picasso, M.: Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167(3–4), 223–237 (1998). doi:10.1016/S0045-7825(98)00121-2 CrossRefGoogle Scholar
  65. 65.
    Repin, S.I.: Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13(2), 121–133 (2002)Google Scholar
  66. 66.
    Saad, M., Zhang, H.: Front tracking for two-phase flow in reservoir simulation by adaptive mesh. Numer. Methods Partial Differential Equations 13(6), 673–697 (1997). doi:10.1002/(SICI)1098-2426(199711)13:6<673::AID-NUM5>3.0.CO;2-O CrossRefGoogle Scholar
  67. 67.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986). doi:10.1137/0907058 CrossRefGoogle Scholar
  68. 68.
    Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo. 40(3), 195–212 (2003). doi:10.1007/s10092-003-0073-2 CrossRefGoogle Scholar
  69. 69.
    Verfürth, R.: Robust a posteriori error estimates for nonstationary convection-diffusion equations. SIAM J. Numer. Anal. 43(4), 1783–1802 (2005). doi:10.1137/040604273 CrossRefGoogle Scholar
  70. 70.
    Vohralík, M.: Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods. Numer. Math. 111(1), 121–158 (2008). doi:10.1007/s00211-008-0168-4 CrossRefGoogle Scholar
  71. 71.
    Vohralík, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. J. Sci. Comput. 46(3), 397–438 (2011). doi:10.1007/s10915-010-9410-1 CrossRefGoogle Scholar
  72. 72.
    Wallis, J., Kendall, R., Little, T.: Constrained residual acceleration of conjugate residual methods. SPE Prod. Eng., 415–428 (1985). Paper SPE 13536-MS. doi:10.2118/13536-MS
  73. 73.
    Wheeler, M.F., Wildey, T., Xue, G.: Efficient algorithms for multiscale modeling in porous media. Numer. Linear Algebra Appl. 17(5), 771–785 (2010). doi:10.1002/nla.742 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions, UMR 7598UPMC University Paris 06ParisFrance
  2. 2.Laboratoire Jacques-Louis Lions, UMR 7598CNRSParisFrance
  3. 3.Institute for Computational Engineering and SciencesUniversity of TexasAustinUSA
  4. 4.INRIA Paris-RocquencourtLe ChesnayFrance

Personalised recommendations