Computational Geosciences

, Volume 17, Issue 2, pp 239–247 | Cite as

Two-phase flow in complicated geometries

Modeling the Frio data using improved computational meshes
Original Paper

Abstract

We study modeling two-phase flow in complicated geometries. We use modern mesh generation techniques to improve the quality of the mesh and at the same time both reduce the number of elements and capture the geometry accurately. The generated meshes consist of orthogonally optimized general hexahedras. To model the flow in general hexahedras, we use the multipoint flux mixed finite element method. As a test problem we use the Frio experiment data.

Keywords

Two-phase flow Multipoint flux method MFMFE Finite element method FEM Mesh generation 

Mathematics Subject Classifications (2010)

64-04 51-04 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The University of Texas at Austin. Center for Subsurface Modeling. http://csm.ices.utexas.edu/
  2. 2.
    Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Computat. Geosci. 6, 405–432 (2002). doi:10.1023/A:1021291114475 CrossRefGoogle Scholar
  3. 3.
    Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127(1), 2–14 (1996). doi:10.1006/jcph.1996.0154 CrossRefGoogle Scholar
  4. 4.
    Arbogast, T., Bryant, S.L.: Numerical subgrid upscaling for waterflood simulations. SPE Reservoir Simulation Symposium, Houston, Texas (2001)Google Scholar
  5. 5.
    Arbogast, T., Minkoff, S.E., Keenan, P.T.: An operator-based approach to upscaling the pressure equation. Computational Methods in Water Resources XII, Vol. 1: Computational Methods in Contamination and Remediation of Water Resources (Burganos et al., ed.), Computational Mechanics Publications (1998)Google Scholar
  6. 6.
    Audigane, P., Blunt, M.J.: Dual mesh method for upscaling in waterflood simulation. Transport Porous Med. 55, 71–89 (2004). doi:10.1023/B:TIPM.0000007309.48913.d2 CrossRefGoogle Scholar
  7. 7.
    Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp. 72(242), 541–576 (2003). doi:10.1090/S0025-5718-02-01441-2 CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media. Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2006)CrossRefGoogle Scholar
  9. 9.
    Christie, M., Blunt, M.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Eval. Eng. 4(4), 308–317 (2001)Google Scholar
  10. 10.
    Edwards, M.G.: Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids. Computat. Geosci. 6, 433–452 (2002). doi:10.1023/A:1021243231313 CrossRefGoogle Scholar
  11. 11.
    Guérillot, D., Verdière, S.: Different pressure grids for reservoir simulation in heterogeneous reservoirs. SPE Reservoir Simulation Symposium, San Antonio, Texas (1995)Google Scholar
  12. 12.
    Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997). doi:10.1006/jcph.1997.5682 CrossRefGoogle Scholar
  13. 13.
    Hovorka, S.D., Romero, M.L., Warne, A.G., Ambrose, W.A., Tremblay, T.A., Treviño, R.H., Sasson, D.: Sequestration of greenhouse gases in brine formations. Tech. rep., University of Texas at Austin, Bureau of Economic Geology (2000)Google Scholar
  14. 14.
    Verdière, S., Guérillot, D.: Dual mesh methods for multiphase flows in heterogenous media. 5th European Conference on the Mathematics of Oil Recovery, Loeben, Austria (1996)Google Scholar
  15. 15.
    Wheeler, M.F., Xue, G., Yotov, I.: Accurate cell-centered discretizations for modeling multiphase flow in porous media on general hexahedral and simplicial grids. SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA (2011)Google Scholar
  16. 16.
    Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44(5), 2082–2106 (2006). doi:10.1137/050638473 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute for Computational Engineering and SciencesUniversity of Texas at AustinAustinUSA

Personalised recommendations