Computational Geosciences

, Volume 17, Issue 1, pp 83–97 | Cite as

A parallel ensemble-based framework for reservoir history matching and uncertainty characterization

  • Reza Tavakoli
  • Gergina Pencheva
  • Mary F. Wheeler
  • Benjamin Ganis
Original Paper

Abstract

We present a parallel framework for history matching and uncertainty characterization based on the Kalman filter update equation for the application of reservoir simulation. The main advantages of ensemble-based data assimilation methods are that they can handle large-scale numerical models with a high degree of nonlinearity and large amount of data, making them perfectly suited for coupling with a reservoir simulator. However, the sequential implementation is computationally expensive as the methods require relatively high number of reservoir simulation runs. Therefore, the main focus of this work is to develop a parallel data assimilation framework with minimum changes into the reservoir simulator source code. In this framework, multiple concurrent realizations are computed on several partitions of a parallel machine. These realizations are further subdivided among different processors, and communication is performed at data assimilation times. Although this parallel framework is general and can be used for different ensemble techniques, we discuss the methodology and compare results of two algorithms, the ensemble Kalman filter (EnKF) and the ensemble smoother (ES). Computational results show that the absolute runtime is greatly reduced using a parallel implementation versus a serial one. In particular, a parallel efficiency of about 35 % is obtained for the EnKF, and an efficiency of more than 50 % is obtained for the ES.

Keywords

Automatic history matching Ensemble Kalman filter Ensemble smoother Parallel efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009). doi:10.2118/117274-PA Google Scholar
  2. 2.
    Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Avellano, A.: The data assimilation research testbed: a community facility. Bull. Am. Meteorol. Soc. 90, 1283–1296 (2009). doi:101175/2009BAMS26181 CrossRefGoogle Scholar
  3. 3.
    Eisenstat, S., Walker, H.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)CrossRefGoogle Scholar
  4. 4.
    Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143–10162 (1994)CrossRefGoogle Scholar
  5. 5.
    Evensen, G.: Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn. 54(6), 539–560 (2004)CrossRefGoogle Scholar
  6. 6.
    Evensen, G.: The ensemble kalman filter for combined state and parameter estimation. IEEE Control Syst. Mag. 29(3), 83–104 (2009)CrossRefGoogle Scholar
  7. 7.
    Emerick, A.A., Reynolds, A.: Ensemble smoother with multiple data assimilation. Comput. Geosci. (2012). doi:101016/j.cageo.2012.03.011 Google Scholar
  8. 8.
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin (2007)Google Scholar
  9. 9.
    Evensen, G., van Leeuwen, P.J.: An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128(6), 1852–1867 (2000)CrossRefGoogle Scholar
  10. 10.
    Evensen, G., Hove, J., Meisingset, H.C., Reiso, E., Seim, K.S., Espelid, O.: Using the EnKF for assisted history matching of a North Sea reservoir model (SPE 106184). In: Proceedings of the 2007 SPE Reservoir Simulation Symposium Houston, Texas, 26–28 February 2007Google Scholar
  11. 11.
    Gao, G., Zafari, M., Reynolds, A.C.: Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF. SPE J. 11(4), 506–515 (2006)Google Scholar
  12. 12.
    Gu, Y., Oliver, D.S.: History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter. SPE J. 10(2), 51–65 (2005)Google Scholar
  13. 13.
    Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129(1), 123–137 (2001)CrossRefGoogle Scholar
  14. 14.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng-T ASME 82, 35–45 (1960)CrossRefGoogle Scholar
  15. 15.
    Keppenne, C.L.: Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Weather Rev. 128(6), 1971–1981 (2000)CrossRefGoogle Scholar
  16. 16.
    Keppenne, C.L., Rienecker, M.M.: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Weather Rev. 130(12), 2951–2965 (2002)CrossRefGoogle Scholar
  17. 17.
    Lacroix, S., Vassilevski, Y., Wheeler, M.: Iteretive solvers of the implicit parallel accurate reservoir simulator (IPARS). I: Single processor case. TICAM report 00-28, The University of Texas at Austin, Austin (2000)Google Scholar
  18. 18.
    Lacroix, S., Vassilevski, Y., Wheeler, M.: Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numer. Linear Algebra Appl. 8(8), 537–549 (2001)CrossRefGoogle Scholar
  19. 19.
    Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative solution methods for modeling multiphase flow in porous media fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926 (2003)CrossRefGoogle Scholar
  20. 20.
    van Leeuwen, P.J., Evensen, G.: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev. 124, 2898–2913 (1996)CrossRefGoogle Scholar
  21. 21.
    Liang, B., Sepehrnoori, K., Delshad, M.: An automatic history matching module with distributed and parallel computing. Pet. Sci. Technol. 27(10), 1092–1108 (2009)CrossRefGoogle Scholar
  22. 22.
    Lu, B., Wheeler, M.F.: Iterative coupling reservoir simulation on high performance computers. Pet. Sci. 6, 43–50 (2009)CrossRefGoogle Scholar
  23. 23.
    Nævdal, G., Mannseth, T., Vefring, E.H.: Near-well reservoir monitoring through ensemble Kalman filter: SPE 75235. In: Proceedings of SPE/DOE Improved Oil Recovery Symposium Freiberg, Germany, 3-6 September (2002)Google Scholar
  24. 24.
    Nævdal, G., Johnsen, L.M., Aanonsen, S.I., Vefring, E.H.: Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE 84372 (2003)Google Scholar
  25. 25.
    Nerger, L., Hiller, W., Schrter, J.: PDAF—the parallel data assimilation framework: experiences with Kalman filtering. In: Zwieflhofer, W., Mozdzynski, G. (eds.) Use of High Performance Computing in Meteorology—Proceedings of the 11 ECMWF Workshop, pp. 63–83. World Scientific, Singapore (2005)Google Scholar
  26. 26.
    Raeder, K., Anderson, J., Collins, N., Hoar, T.J., Kay, J.E.: Dart/cam: an ensemble data assimilation system for cesm atmospheric models. J. Climate (American Meteorological Society) (2012) doi:10.1175/JCLI-D-11-00395.1 Google Scholar
  27. 27.
    Serafy, G.E., Verlaan, M., Hummel, S., Weerts, A., Dhondia, J.: Openda open source generic data assimilation environment and its application in process models. Geophys. Res. Abstr. 12, EGU2010-9346-2 (2010)Google Scholar
  28. 28.
    SESAM: An integrated system of sequential assimilation modules (SESAM). URL http://www-meomhmginpgfr/Web/Outils/SESAM/ (2009). Accessed 10 Aug 2012
  29. 29.
    Skjervheim, J.A., Evensen, G., Aanonsen, S.I., Ruud, B.O., Johansen, T.A.: Incorporating 4D seismic data in reservoir simulation models using ensemble Kalman filter. SPE J. 12(3), 282–292 (2007). doi:10.2118/95789-PA Google Scholar
  30. 30.
    Skjervheim, J.A., Evensen, G., Hove, J., Vabo, J.G.: An ensemble smoother for assisted history matching. SPE 141929, presented at the SPE Reservoir Simulation Symposium, 21–23 February 2011Google Scholar
  31. 31.
    Tavakoli, R., Pencheva, G., Wheeler, M.F.: Multi-level parallelization of ensemble kalman filter for reservoir history matching. SPE 141657–PP, presented at the SPE Reservoir Simulation Symposium, 21–23 February 2011Google Scholar
  32. 32.
    Tavakoli, R., Pencheva, G., Wheeler, M.F., Ganis, B.: Petroleum reservoir parameter estimation and uncertainty assessment with the parallel ensemble based framework coupled with ipars. Tech. rep., The Institute of Computational Engineering and Sciences (ICES), The Univeristy of Texas at Austin (2011)Google Scholar
  33. 33.
    Vassilevski, Y.: Iterative solvers for the implicit parallel accurate reservoir simulator (IPARS). II: Parallelization issues. TICAM Report 00-33, The University of Texas at Austin (2000)Google Scholar
  34. 34.
    Wheeler, J., et al.: IPARS User’s Manual. Center for Subsurface Modeling, ICES, The University of Texas at Austin (2002)Google Scholar
  35. 35.
    Wheeler, M.F.: Advanced techniques and algorithms for reservoir simulation, II: the multiblock approach in the integrated parallel accurate reservoir simulator (IPARS). Tech. Rep. 01-25, ICES, The University of Texas at Austin, Austin, TX (2001)Google Scholar
  36. 36.
    Xin, L.: Continuous reservoir model updating by ensemble Kalman filter on grid computing architectures. Ph.D. thesis, Louisiana State University, Baton Rouge, Louisiana (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Reza Tavakoli
    • 1
  • Gergina Pencheva
    • 1
  • Mary F. Wheeler
    • 1
  • Benjamin Ganis
    • 1
  1. 1.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations