Computational Geosciences

, Volume 17, Issue 1, pp 1–24 | Cite as

GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes

  • Dmitrii A. Kulik
  • Thomas Wagner
  • Svitlana V. Dmytrieva
  • Georg Kosakowski
  • Ferdinand F. Hingerl
  • Konstantin V. Chudnenko
  • Urs R. Berner
Original Paper

Abstract

Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT simulations can be based on the operator-splitting approach, where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition, temperature, or pressure has changed. Modeling of complex natural systems requires consideration of multiphase–multicomponent geochemical models that include nonideal solutions (aqueous electrolytes, fluids, gases, solid solutions, and melts). Direct Gibbs energy minimization (GEM) methods have numerous advantages for the realistic geochemical modeling of such fluid–rock systems. Substantial improvements and extensions to the revised GEM interior point method algorithm based on Karpov’s convex programming approach are described, as implemented in the GEMS3K C/C+ + code, which is also the numerical kernel of GEM-Selektor v.3 package (http://gems.web.psi.ch). GEMS3K is presented in the context of the essential criteria of chemical plausibility, robustness of results, mass balance accuracy, numerical stability, speed, and portability to high-performance computing systems. The stand-alone GEMS3K code can treat very complex chemical systems with many nonideal solution phases accurately. It is fast, delivering chemically plausible and accurate results with the same or better mass balance precision as that of conventional speciation codes. GEMS3K is already used in several coupled RMT codes (e.g., OpenGeoSys-GEMS) capable of high-performance computing.

Keywords

Geochemical modeling Reactive mass transport Gibbs energy minimization Nonideal systems Fluid–rock interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melancon, J., Pelton, A.D., Petersen, S.: FactSage thermochemical software and databases. Calphad 26, 189–228 (2002)CrossRefGoogle Scholar
  2. 2.
    Bale, C.W., Belisle, E., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Jung, I.H., Kang, Y.B., Melancon, J., Pelton, A.D., Robelin, C., Petersen, S.: FactSage thermochemical software and databases—recent developments. Calphad 33, 295–311 (2009)CrossRefGoogle Scholar
  3. 3.
    Baumann, C., Gerya, T.V., Connolly, J.A.D.: Numerical modelling of spontaneous slab breakoff dynamics during continental collision. Geol. Soc. Lond. Spec. Publ. 332, 99–114 (2010)CrossRefGoogle Scholar
  4. 4.
    Bethke, C.M.: Geochemical and Biogeochemical Reaction Modeling. Cambridge University Press, New York (2008)Google Scholar
  5. 5.
    Borisov, M.V., Shvarov, Y.V.: Thermodynamics of Geochemical Processes. Moscow State University Publishers, Moscow (in Russian, 1992)Google Scholar
  6. 6.
    Bruno, J., Bosbach, D., Kulik, D., Navrotsky, A.: Chemical Thermodynamics of Solid Solutions of Interest in Radioactive Waste Management. A State-of-the-art Report. OECD NEA, Paris (2007)Google Scholar
  7. 7.
    Centler, F., Shao, H., De Biase, C., et al.: GeoSysBRNS—a flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes. Comput. Geosci. 36, 397–405 (2010)CrossRefGoogle Scholar
  8. 8.
    Chudnenko, K.V.: Thermodynamic Modeling in Geochemistry: The Theory, the Algorithms, the Software, the Applications. Academic Publishing House GEO, Novosibirsk (in Russian, 2010)Google Scholar
  9. 9.
    Chudnenko, K.V., Karpov, I.K., Kulik, D.A.: A High-Precision IPM-2 Non-linear Minimization Module of GEM-Selektor v.2-PSI Program Code for geochemical Thermodynamic Modeling. Technical Report TM-44–02–06. Paul Scherrer Institut, Villigen (2002)Google Scholar
  10. 10.
    Connolly, J.A.D., Petrini, K.: An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J. Metamorph. Geol. 20, 697–708 (2002)CrossRefGoogle Scholar
  11. 11.
    Connolly, J.A.D.: Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005)CrossRefGoogle Scholar
  12. 12.
    Coumou, D., Matthai, S., Geiger, S., Driesner, T.: A parallel FE–FV scheme to solve fluid flow in complex geologic media. Comput. Geosci. 34, 1697–1707 (2008)CrossRefGoogle Scholar
  13. 13.
    de Capitani, C., Brown, T.H.: The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim. Cosmochim. Acta 51, 2639–2652 (1987)CrossRefGoogle Scholar
  14. 14.
    de Capitani, C., Petrakakis, K.: The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral. 95, 1006–1016 (2010)CrossRefGoogle Scholar
  15. 15.
    Dolejs, D., Wagner, T.: Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: implications for hydrothermal mass transfer in granitic rocks. Geochim. Cosmochim. Acta 72, 526–553 (2008)CrossRefGoogle Scholar
  16. 16.
    Ebel, D.S., Ghiorso, M.S., Sack, R.O., Grossmann, L.: Gibbs energy minimization in gas + liquid + solid systems. J. Comput. Chem. 21, 247–256 (2000)CrossRefGoogle Scholar
  17. 17.
    Engesgaard, P., Kipp, K.L.: A geochemical transport model for redox-controlled movement of mineral fronts in groundwater-flow systems—a case of nitrate removal by oxidation of pyrite. Water Resour. Res. 28, 2829–2843 (1992)CrossRefGoogle Scholar
  18. 18.
    Eriksson, G., Hack, K.: Chemsage—a computer program for the calculation of complex chemical equilibria. Metall. Mater. Trans. B 21, 1013–1023 (1990)Google Scholar
  19. 19.
    Eriksson, G., Thompson, W.T.: A procedure to estimate equilibrium concentrations in multicomponent systems and related applications. Calphad 13, 389–400 (1989)CrossRefGoogle Scholar
  20. 20.
    Ghiorso, M.S.: Algorithms for the estimation of phase stability in heterogeneous thermodynamic systems. Geochim. Cosmochim. Acta 58, 5489–5501 (1994)CrossRefGoogle Scholar
  21. 21.
    GNU free software foundation: GNU Lesser General Public License. Free Software Foundation, Boston. http://www.gnu.org/licenses/lgpl.html (2007)
  22. 22.
    Hammond, G., Lichtner, P., Lu, C.: Subsurface multiphase flow and multicomponent reactive transport modeling using high-performance computing. J. Phys. Conf. Ser. 78(012025), 1–10 (2007)Google Scholar
  23. 23.
    Karpov, I.K.: Computer-Aided Physico-Chemical Modeling in Geochemistry. Nauka Publ., Novosibirsk (in Russian, 1981)Google Scholar
  24. 24.
    Karpov, I.K., Chudnenko, K.V., Kulik, D.A.: Modeling chemical mass-transfer in geochemical processes: thermodynamic relations, conditions of equilibria and numerical algorithms. Am. J. Sci. 297, 767–806 (1997)CrossRefGoogle Scholar
  25. 25.
    Karpov, I.K., Chudnenko, K.V., Kulik, D.A., Avchenko, O.V., Bychinskii, V.A.: Minimization of Gibbs free energy in geochemical systems by convex programming. Geochem. Int. 39, 1108–1119 (2001)Google Scholar
  26. 26.
    Karpov, I.K., Chudnenko, K.V., Kulik, D.A., Bychinskii, V.A.: The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling. Am. J. Sci. 302, 281–311 (2002)CrossRefGoogle Scholar
  27. 27.
    Keizer, M.G., Van Riemsdijk, W.H.: ECOSAT. Technical Report. Department Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen, The Netherlands (1998)Google Scholar
  28. 28.
    Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)CrossRefGoogle Scholar
  29. 29.
    Kolditz, O., Görke, U.-J., Shao, H., Wang, W. (eds.): Benchmarks and Examples for Thermo-Hydro-Mechanical/Chemical Processes in Porous Media. Series: Lecture Notes in Computational Science and Engineering, vol. 86. Springer, Berlin (2012)Google Scholar
  30. 30.
    Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. (2012). doi:10.1007/s12665–012–1546-x Google Scholar
  31. 31.
    Kulik, D., Berner, U., Curti, E.: Modelling chemical equilibrium partitioning with the GEMS-PSI code. In: Smith, B., Gschwend, B. (eds.) PSI Scientific Report 2003/Volume IV, Nuclear Energy and Safety, pp. 109–122. Paul Scherrer Institut, Villigen (2004)Google Scholar
  32. 32.
    Kulik, D.A.: Classic adsorption isotherms incorporated in modern surface complexation models: implications for sorption of actinides. Radiochim. Acta 94, 765–778 (2006)CrossRefGoogle Scholar
  33. 33.
    Kulik, D.A.: Standard molar Gibbs energies and activity coefficients of surface complexes (thermodynamic insights). In: Luetzenkirchen, J. (ed.) Surface Complexation Modelling. Interface Science and Technology, vol. 11, pp. 171–250. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  34. 34.
    Lukas, H.L., Fries, S., Sundman, B.: Computational Thermodynamics: The Calphad Method. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  35. 35.
    McDermott, C.I., Walsh, R., Mettier, R., Kosakowski, G., Kolditz, O.: Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput. Geosci. 13, 349–361 (2009)CrossRefGoogle Scholar
  36. 36.
    Monecke, T., Kempe, U., Trinkler, M., Thomas, R., Dulski, P., Wagner, T.: Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 39, 295–298 (2011)CrossRefGoogle Scholar
  37. 37.
    Nakagawa, T., Tackley, P.J., Deschamps, F., Connolly, J.A.D.: Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle. Geochem. Geophys. Geosyst. (G3) 10, Q03004 (2009)CrossRefGoogle Scholar
  38. 38.
    Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S.G.S. Water-Resources Investigations Report 99–4259, Denver, Colorado (1999)Google Scholar
  39. 39.
    Pfingsten, W.: Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium. Nucl. Technol. 116, 208–221 (1996)Google Scholar
  40. 40.
    Pozo, R.: Template numerical toolkit: an interface for scientific computing in C+ +. National Institute of Standards and Trechnology (NIST), Gaithersburg, MD. http://math.nist.gov/tnt (2004)
  41. 41.
    Prommer, H.: A Reactive Multicomponent Transport Model for Saturated Porous Media. User’s Manual Version 1.0. Contaminated Land Assessment and Remediation Research Centre. The University of Edinburgh, UK (2002)Google Scholar
  42. 42.
    Rastetter, E.B.: Modeling coupled biogeochemical cycles. Front. Ecol. Environ. 9, 68–73 (2011)CrossRefGoogle Scholar
  43. 43.
    Reed, M.H.: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528 (1982)CrossRefGoogle Scholar
  44. 44.
    Reed, M.H.: Calculation of simultaneous chemical equilibria in aqueous-mineral-gas systems and its application to modeling hydrothermal processes. Rev. Econ. Geol. 10, 109–124 (1998)Google Scholar
  45. 45.
    Reed, M.H., Spycher, N.F.: Calculation of pH and mineral equilibria in hydrothermal waters with applications to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta 48, 1479–1492 (1984)CrossRefGoogle Scholar
  46. 46.
    Shao, H., Dmytrieva, S.V., Kolditz, O., Kulik, D.A., Pfingsten, W., Kosakowski, G.: Modeling reactive transport in non-ideal aqueous-solid solution system. Appl. Geochem. 24, 1287–1300 (2009)CrossRefGoogle Scholar
  47. 47.
    Shao, H., Kulik D.A., Berner U., Kosakowski G., Kolditz O.: Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column. Geochem. J. 43, e37–e42 (2009)CrossRefGoogle Scholar
  48. 48.
    Shvarov, Y.V.: A general equilibrium criterion for an isobaric-isothermal model of a chemical system. Geochem. Int. 18, 38–45 (1981)Google Scholar
  49. 49.
    Shvarov, Y.: A numerical criterion for existence of the equilibrium state in an open chemical system. Sci. Geol. Bull. 42, 365–369 (1989)Google Scholar
  50. 50.
    Shvarov, Y.V.: HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by windows. Geochem. Int. 46, 834–839 (2008)CrossRefGoogle Scholar
  51. 51.
    Singh, A.K., Goerke, U.-J., Kolditz, O.: Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36, 3446–3458 (2011)CrossRefGoogle Scholar
  52. 52.
    Siret, D., Poulet, T., Regenauer-Lieb, K., Connolly, J.A.D.: PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling. Acta Geotech. 4, 107–115 (2009)CrossRefGoogle Scholar
  53. 53.
    Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005)CrossRefGoogle Scholar
  54. 54.
    Tenzer, H., Park, C.L., Kolditz, O., McDermott, C.I.: Application of the geomechanical facies approach and comparison of exploration and evaluation methods used at Soultz-sous-Forets (France) and Spa Urach (Germany) geothermal sites. Environ. Earth Sci. 61, 853–880 (2010)CrossRefGoogle Scholar
  55. 55.
    Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)CrossRefGoogle Scholar
  56. 56.
    Tromp, T.K., Van Cappellen, P., Key R.M.: A global model for the early diagenesis of organic carbon and organic phosphorous in marine sediments. Geochim. Cosmochim. Acta 59, 1259–1284 (1995)CrossRefGoogle Scholar
  57. 57.
    Van der Lee, J., De Windt, L.: Present state and future directions of modeling of geochemistry in hydrogeological systems. J. Contam. Hydrol. 47, 265–282 (2001)CrossRefGoogle Scholar
  58. 58.
    Van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29, 265–275 (2003)CrossRefGoogle Scholar
  59. 59.
    Wagner, T., Kulik, D.A., Hingerl, F.F., Dmytrieva, S.V.: GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Canadian Mineralogist 50 (2012, in press)Google Scholar
  60. 60.
    Wang, W., Kosakowski, G., Kolditz, O.: A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput. Geosci. 35, 1631–1641 (2009)CrossRefGoogle Scholar
  61. 61.
    Wang, Y., Van Cappellen, P.: A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60, 2993–3014. (1996)CrossRefGoogle Scholar
  62. 62.
    Westall, J.C., Zachary, J.L., Morel, F.M.M.: MINEQL: A Compact Program for Computation of Chemical Equilibria in Aquatic Systems. R.M. Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology, Cambridge, MA (1976)Google Scholar
  63. 63.
    Xie, M., Kolditz, O., Moog, H.C.: A geochemical transport model for thermo-hydro-chemical (THC) coupled processes with saline water. Water Resour. Res. 47, W02545 (2011)CrossRefGoogle Scholar
  64. 64.
    Kosakowski, G., Kulik, D.A., Shao, H.: OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads. Geophys. Res. Abstr. 14, EGU2012–2642 (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dmitrii A. Kulik
    • 1
  • Thomas Wagner
    • 2
  • Svitlana V. Dmytrieva
    • 3
  • Georg Kosakowski
    • 1
  • Ferdinand F. Hingerl
    • 1
    • 2
  • Konstantin V. Chudnenko
    • 4
  • Urs R. Berner
    • 1
  1. 1.Laboratory for Waste ManagementPaul Scherrer InstitutVilligen PSISwitzerland
  2. 2.Institute for Geochemistry and Petrology, ETH ZurichZurichSwitzerland
  3. 3.Institute of Environmental GeochemistryKyiv-142Ukraine
  4. 4.Vinogradov Institute of Geochemistry SB RASIrkutskRussia

Personalised recommendations