Computational Geosciences

, Volume 16, Issue 4, pp 901–911 | Cite as

On the time scales of nonlinear instability in miscible displacement porous media flow

Original Paper

Abstract

In this paper, we analyze the time scales associated with instable fingering induced by density contrasts in miscible displacement porous media flow. We perform numerical simulations of a two-dimensional domain with boundaries that are closed to flow and identify the three regimes of the dynamics, namely the development of a stable diffusive boundary layer, the onset and growth of instabilities, and the fully nonlinear dynamics. Special focus is given to the onset of the fully nonlinear regime. The results are generic in the sense that there are no parameters in the non-dimensional model problem. Large ensembles are studied and an error estimate is given based on the combined effect of numerical errors and sampling errors. The nonlinear time scales show a dependence on the size of initial perturbations. We estimate this size for three formations used for CO2 storage and find that the onset of enhanced convective mixing is considerably delayed compared with the linear onset time.

Keywords

Porous media Convection Instability Numerical simulation Error estimation CO2 storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, R.: Implicit Runge–Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Baklid, A., Korbøl, R., Owren, G.: Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. SPE 36600, 269–277 (1996)Google Scholar
  3. 3.
    Batzle, M., Wang, Z.: Seismic properties of pore fluids. Geophysics 11, 1396–1408 (1992)Google Scholar
  4. 4.
    Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Norwell (1991)MATHGoogle Scholar
  5. 5.
    Chadwick, R.A., Zweigel, P., Gregersen, U., Kirby, G.A., Holloway, S., Johannessen, P.N.: Geological reservoir characterization of a CO2 storage site: the Utsira Sand, Sleipner, northern North Sea. Energy 29, 1371–1381 (2004)CrossRefGoogle Scholar
  6. 6.
    Diersch, H.-J.G., Kolditz, O.: Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25, 899–944 (2002)CrossRefGoogle Scholar
  7. 7.
    Duan, Z., Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solution from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)CrossRefGoogle Scholar
  8. 8.
    Elder, J.W.: Steady free convection in a porous medium heated from below. J. Fluid Mech. 27, 29–48 (1967)CrossRefGoogle Scholar
  9. 9.
    Elder, J.W.: Transient convection in a porous medium. J. Fluid Mech. 27(3), 609–623 (1967)CrossRefGoogle Scholar
  10. 10.
    Elenius, M.T., Nordbotten, J.M., Kalisch, H.: Effects of a capillary transition zone on the stability of a diffusive boundary layer. IMA J. Appl. Math. (2012, accepted for publication)Google Scholar
  11. 11.
    Ennis-King, J.P., Paterson, L.: Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE J. 10(3), 349–356 (2005)Google Scholar
  12. 12.
    Ennis-King, J.P., Preston, I., Paterson, L.: Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17(8), 084107 (2005)CrossRefGoogle Scholar
  13. 13.
    Fein, E.: d 3 f-Ein Programmpaket zur Modellierung von Dichteströmungen. GRS, Braunschweig, GRS-139 (1998)Google Scholar
  14. 14.
    Frolkovic, P., De Schepper, H.: Numerical modelling of convection dominated transport coupled with density driven flow in porous media. Adv. Water Resour. 24, 63–72 (2001)CrossRefGoogle Scholar
  15. 15.
    Garcia, J.E.: Density of aqueous solutions of CO2. Report of Lawrence Berkley National Laboratory (2001)Google Scholar
  16. 16.
    Green, C., Ennis-King, J., Pruess, K.: Effect of vertical heterogeneity on long-term migration of CO2 in saline formations. Energy Proc. 1, 1823–1830 (2009)CrossRefGoogle Scholar
  17. 17.
    Hidalgo, J.J., Carrera, J.: Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 441–452 (2009)MATHCrossRefGoogle Scholar
  18. 18.
    Iding, M., Ringrose, P.: Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int. J. Greenhouse Gas Control 4, 242–248 (2010)CrossRefGoogle Scholar
  19. 19.
    Johannsen, K.: On the validity of the Boussinesq approximation for the Elder problem. Comput. Geosci. 7(3), 169–182 (2003)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Johannsen, K.: Numerische Aspekte dichtegetriebener Strömung in porösen Medien. Professorial dissertation (habilitation), Heidelberg, Germany (2004)Google Scholar
  21. 21.
    Johannsen, K., Oswald, S., Held, R., Kinzelbach, W.: Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium. Adv. Water Resour. 29, 1690–1704 (2006)CrossRefGoogle Scholar
  22. 22.
    Johnson, R.A.: Miller and Freund’s Probability and Statistics for Engineers. Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  23. 23.
    Kneafsey, T.J., Pruess, K.: Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp. Porous Med. 82, 123–139 (2010)CrossRefGoogle Scholar
  24. 24.
    Maldal, T., Tappel, I.M.: CO2 underground storage for Shøhvit gas field development. Energy 29, 1403–1411 (2004)CrossRefGoogle Scholar
  25. 25.
    Mathieson, A., Wright, I., Roberts, D., Ringrose, P.: Satellite imaging to monitor CO2 movement at Krechba, Algeria. Energy Proc. 1, 2201–2209 (2009)CrossRefGoogle Scholar
  26. 26.
    Pamukcu, Y., Hurter, S., Jammes, L., Vu-Hoang, D., Pekot, L.: Characterizing and predicting short term performance for the In Salah Krechba field CCS joint industry project. Energy Proc. 4, 3371–3378 (2011)CrossRefGoogle Scholar
  27. 27.
    Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K.: High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33, 443–455 (2010)CrossRefGoogle Scholar
  28. 28.
    Pham, T.H.V., Maast, T.E., Hellevang, H., Aagard, P.I.: Numerical modeling including hysteresis properties for CO2 storage in Tubåen formation, Snøhvit field, Barents Sea. Energy Proc. 4, 3746–3753 (2011)CrossRefGoogle Scholar
  29. 29.
    Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rochelle, C.A., Moore, Y.A.: The solubility of supercritical CO2 into pure water and synthetic Utsira porewater. British Geological Survey, CR/02/052 (2006)Google Scholar
  31. 31.
    Slim, A.C., Ramakrishnan, T.S.: Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys. Fluids 22, 124103 (2010)CrossRefGoogle Scholar
  32. 32.
    Tewes, F., Boury, F.: Formation and rheological properties of the supercritical CO2–water pure interface. J. Phys. Chem. 548, 892–898 (2005)Google Scholar
  33. 33.
    van Duijn, C.J., Pieters, G.J.M., van der Ploeg, A., Wooding, R.A.: Stability criteria for the vertical boundary layer formed by throughflow near the surface of a porous medium. In: Raats, P.A.C., Smiles, D., Warrick, A.W. (eds.) Environmental Mechanics; Water, Mass and Energy Transfer in the Biosphere—The Philip Volume, vol. 129, pp. 155–169 (2002)Google Scholar
  34. 34.
    Wooding, R.A.: Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2, 273–285 (1957)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Wooding, R.A., Tylor, S.W., White, I.: Convection in groundwater below an evaporating salt lake: 1. Onset of instability. Water Resour. Res. 33(6), 1199–1217 (1997)CrossRefGoogle Scholar
  36. 36.
    Wooding, R.A., Tylor, S.W., White, I., Anderson, P.A.: Convection in groundwater below an evaporating salt lake: 2. Evolution of fingers and plumes. Water Resour. Res. 33(6), 1219–1228 (1997)CrossRefGoogle Scholar
  37. 37.
    Xu, X., Chen, S., Zhang, D.: Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. Water Resour. 29, 397–407 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Uni CIPRBergenNorway

Personalised recommendations