Computational Geosciences

, Volume 16, Issue 3, pp 779–797 | Cite as

Multiple-point geostatistical modeling based on the cross-correlation functions

  • Pejman Tahmasebi
  • Ardeshir Hezarkhani
  • Muhammad Sahimi
Original Paper


An important issue in reservoir modeling is accurate generation of complex structures. The problem is difficult because the connectivity of the flow paths must be preserved. Multiple-point geostatistics is one of the most effective methods that can model the spatial patterns of geological structures, which is based on an informative geological training image that contains the variability, connectivity, and structural properties of a reservoir. Several pixel- and pattern-based methods have been developed in the past. In particular, pattern-based algorithms have become popular due to their ability for honoring the connectivity and geological features of a reservoir. But a shortcoming of such methods is that they require a massive data base, which make them highly memory- and CPU-intensive. In this paper, we propose a novel methodology for which there is no need to construct pattern data base and small data event. A new function for the similarity of the generated pattern and the training image, based on a cross-correlation (CC) function, is proposed that can be used with both categorical and continuous training images. We combine the CC function with an overlap strategy and a new approach, adaptive recursive template splitting along a raster path, in order to develop an algorithm, which we call cross-correlation simulation (CCSIM), for generation of the realizations of a reservoir with accurate conditioning and continuity. The performance of CCSIM is tested for a variety of training images. The results, when compared with those of the previous methods, indicate significant improvement in the CPU and memory requirements.


Multiple-point geostatistics Cross-correlation Training image Conditional simulation Adaptive recursive template splitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aitokhuehi, I., Durlofsky, L.J.: Optimizing the performance of smart wells in complex reservoirs using continuously updated geological models. J. Pet. Sci. Eng. 48, 254–264 (2005)CrossRefGoogle Scholar
  2. 2.
    Arpat, B.: Sequential simulation with patterns. Ph.D. thesis, Stanford University (2005)Google Scholar
  3. 3.
    Arpat, B., Caers, J.: Stochastic simulation with patterns. Math. Geol. 39, 177–203 (2007)CrossRefGoogle Scholar
  4. 4.
    Borgman, L., Taheri, M., Hagan, R.: Three-dimensional frequency-domain simulations of geological variables. In: Verly, G., et al. (eds.) Geostatistics for Natural Resources Characterization, pp. 517–541. Reidel, Dordrecht (1984)Google Scholar
  5. 5.
    Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1042–1052 (1993)CrossRefGoogle Scholar
  6. 6.
    Caers, J., Park, K.A.: Distance-based representation of reservoir uncertainty: the Metric EnKF. In: Proceedings of the 11th European Conference on the Mathematics of Oil Recovery, Bergen, Norway (2008)Google Scholar
  7. 7.
    Caers, J.: Petroleum Geostatistics. Society of Petroleum Engineers, Richardson (2005)Google Scholar
  8. 8.
    Caers, J., Journel, A.G.: Stochastic reservoir simulation using neural networks trained on outcrop data. SPE paper 49026 (1998)Google Scholar
  9. 9.
    Caers, J., Srinivasan, S., Journel, A.G.: Geostatistical quantification of geological information for a fluvial-type North Sea reservoir. SPE paper 56655 (1999)Google Scholar
  10. 10.
    Caers, J., Strebelle, S., Payrazyan, K.: Stochastic Integration of Seismic and Geological Scenarios: A Submarine Channel Saga, pp. 192–196. The Leading Edge (2003)Google Scholar
  11. 11.
    Chiles, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Chu, J., Journel, A.G.: Conditional fBm simulation with dual kriging. In: Dimitrakopoulos, R. (ed.) Geostatistics for the Next Century, pp. 407–421. Kluwer, Dordrecht (1993)Google Scholar
  13. 13.
    Chugunova, T., Hu, L.: Multiple-point simulations constrained by continuous auxiliary data. Math. Geosci. 40, 133–146 (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Daly, C.: Higher order models using entropy, Markov random fields and sequential simulation. In: Leuangthong, O., Deutsch, C.V. (eds.) Geostatistics, pp. 215–224. Springer, Berlin (2004)Google Scholar
  15. 15.
    Daly, C., Knudby, C.: Multipoint statistics in reservoir modelling and in computer vision. In: Petroleum Geostatistics 2007, Cascais, Portugal (2007)Google Scholar
  16. 16.
    Davis, M.: Production of conditional simulations via the LU decomposition of the covariance matrix. Math. Geol. 19, 91–98 (1987)CrossRefGoogle Scholar
  17. 17.
    Deutsch, C.V.: Annealing techniques applied to reservoir modeling and integration of geological and engineering (well test) data. Ph.D. thesis, Stanford University (1992)Google Scholar
  18. 18.
    Deutsch, C.V., Journel, A.G.: GSLIB: Geostatistical Software Library and User’s Guide, 2nd edn. Oxford University Press, Oxford (1998)Google Scholar
  19. 19.
    Deutsch, C.V., Wang, L.: Hierarchical object-based geostatistical modeling of fluvial reservoirs. Paper SPE 36514 (1996)Google Scholar
  20. 20.
    Dimitrakopoulos, R., Mustapha, H., Gloaguen, E.: High-order statistics of spatial random fields: exploring spatial cumulants for modelling complex, non-Gaussian and non-linear phenomena. Math. Geosci. 42, 65–100 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Dimitrakopoulos, R., Luo, X.: Generalized sequential Gaussian simulation on group size and screen-effect approximations for large field simulations. Math. Geol. 36, 567–591 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Di Stefano, L., Mattoccia, S., Tombari, F.: ZNCC-based template matching using bounded partial correlation. Pattern Recogn. Lett. 26, 2129–2134 (2005)CrossRefGoogle Scholar
  23. 23.
    El Ouassini, A., Saucier, A., Marcotte, D., Favis, B.: A patchwork approach to stochastic simulation: a route towards the analysis of morphology in multiphase systems. Chaos, Solitons Fractals 36, 418–436 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Farmer, C.: Numerical rocks. In: King, P.R. (ed.) The Mathematical Generation of Reservoir Geology, pp. 22–33. Clarendon, Oxford (1990)Google Scholar
  25. 25.
    Feyen, L., Caers, J.: Quantifying geological uncertainty for flow and transport modelling in multi-modal heterogeneous formations. Adv. Water Resour. 29, 912–929 (2006)CrossRefGoogle Scholar
  26. 26.
    Gloaguen, E., Dimitrakopoulos, R.: Two-dimensional conditional simulations based on the wavelet decomposition of training images. Math. Geosci. 41, 679–701 (2009)zbMATHCrossRefGoogle Scholar
  27. 27.
    Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University Press, Oxford (1997)Google Scholar
  28. 28.
    Goshtasby, A., Gage, S.H., Bartholic, J.F.: A two-stage cross-correlation approach to template matching. IEEE Trans. Pattern Anal. Mach. Intell. 6, 374–378 (1984)CrossRefGoogle Scholar
  29. 29.
    Guardiano, F., Srivastava, M.: Multivariate geostatistics: beyond bivariate moments. In: Geostatistics - Troia, pp. 133–144. Kluwer Academic, Dordrecht (1993)CrossRefGoogle Scholar
  30. 30.
    Haldorsen, H.H., Lake, L.W.: A new approach to shale management in field-scale models. Soc. Pet. Eng. J. 24, 447–452 (1984)Google Scholar
  31. 31.
    Hamzehpour, H., Rasaei, M.R., Sahimi, M.: Development of optimal models of porous media by combining static and dynamic data: the permeability and porosity distributions. Phys. Rev. E 75, 056311/1–056311/17 (2007)Google Scholar
  32. 32.
    Harding, A., Strebelle, S., Levy, M.: Reservoir facies modeling: new advances in mps. In: Proceedings of GEOSTAT 2004, Banff, Canada (2004)Google Scholar
  33. 33.
    Hoffman, B.T., Caers, J.: History matching by jointly perturbing local facies proportions and their spatial distribution: application to a North Sea reservoir. J. Pet. Sci. Eng. 57, 257–272 (2007)CrossRefGoogle Scholar
  34. 34.
    Holden, L., Hauge, R., Skare, O., Skorstad, A.: Modeling of fluvial reservoirs with object models. Math. Geol. 30, 473–496 (1998)CrossRefGoogle Scholar
  35. 35.
    Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42, 487–517 (2010)zbMATHCrossRefGoogle Scholar
  36. 36.
    Höppner, F., Klawonn, F.: Compensation of translational displacement in time series clustering using cross correlation. In: Proceedings of the 8th International Symposium on Intelligent Data Analysis, Advances in Intelligent Data Analysis VIII (2009)Google Scholar
  37. 37.
    Huysmans, M., Dassargues, A.: Application of multiple-point geostatistics on modelling groundwater flow and transport in a crossbedded aquifer. Paper presented at GeoENV2008: 7th international conference on geostatistics for environmental applications, Southampton, 8–10 Sept 2008Google Scholar
  38. 38.
    Jensen, J.L., Lake, L.W., Corbett, P.W.M., Goggin, D.J.: Statistics for Petroleum Engineers and Geoscientists, 2nd edn. Prentice Hall, Upper Saddle River (2000)Google Scholar
  39. 39.
    Journel, A.G.: Geostatistics for conditional simulation of ore bodies. Econ. Geol. 69, 673–687 (1974)CrossRefGoogle Scholar
  40. 40.
    Journel, A.G.: Geostatistics: roadblocks and challenges. In: Soares, A. (ed.) Geostatistics—Troia, vol. 1, pp. 213-224. Kluwer Academic, Dordrecht (1992)Google Scholar
  41. 41.
    Journel, A.G.: Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses. Math. Geol. 34, 573 (2002)zbMATHCrossRefGoogle Scholar
  42. 42.
    Journel, A.G., Alabert, F.G.: Non-Gaussian data expansion in the earth sciences. Terra Nova 1, 123–134 (1989)CrossRefGoogle Scholar
  43. 43.
    Journel, A.G., Deutsch, C.V.: Entropy and spatial disorder. Math. Geol. 25, 329–355 (1993)CrossRefGoogle Scholar
  44. 44.
    Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic, New York (1978)Google Scholar
  45. 45.
    Kjønsberg, H., Kolbjørnsen, O.: Markov mesh simulations with data conditioning through indicator kriging. In: Proceedings of the 8th International Geostatistics Congress, Santiago, Chile (2008)Google Scholar
  46. 46.
    Kleingeld, W.J., Lantuejoul, C., Prins, C.F., Thurston, M.L.: The conditional simulation of a Cox process with application to deposits with discrete particles. In: Baafi, E.Y., Schofield, N.A. (eds.) Geostatistics Wollongong 96, pp. 683–694. Kluwer Academic, Dordrecht (1997)CrossRefGoogle Scholar
  47. 47.
    Knuth, D.: Art of Computer Programming, 3rd edn. Addison-Wesley, Reading (1997)Google Scholar
  48. 48.
    Lewis, J.P.: Fast template matching. Vision Interface, pp. 120–123 (1995, Fast normalized cross-correlation, unpublished extended version of the same paper)Google Scholar
  49. 49.
    Liu, Y., Harding, A., Abriel, W., Strebelle, S.: Multiple-point simulation integrating wells, three-dimensional seismic data, and geology. AAPG Bull. 88, 905–921 (2004)CrossRefGoogle Scholar
  50. 50.
    Lyster, S., Deutsch, C.V.: MPS simulation in a Gibbs sampler algorithm. In: Proceedings of the 8th International Geostatistics Congress, Santiago, Chile (2008)Google Scholar
  51. 51.
    Mariethoz, G., Renard, P., Straubhaar, J.: The direct sampling method to perform multiple-point simulations. Water Resour. Res. 46, 2008WR007621 (2010)Google Scholar
  52. 52.
    Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Probab. 5, 439–68 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Mattoccia, S., Tombari, F., Di Stefano, L.: Reliable rejection of mismatching candidates for efficient ZNCC template matching. In: Image Processing. ICIP 2008. 15th IEEE International, pp. 849–852 (2008)Google Scholar
  54. 54.
    Ooi, J., Rao, K.: New insights into correlation-based template matching. In: Proceedings of SPIE, V., Applications of Artificial Intelligence IX, p. 1468. Orlando (1991)Google Scholar
  55. 55.
    Ortiz, J.M., Deutsch, C.V.: Indicator simulation accounting for multiple-point statistics. Math. Geol. 36, 545–565 (2004)CrossRefGoogle Scholar
  56. 56.
    Ortiz, J.M., Emery, X.: Integrating multiple point statistics into sequential simulation algorithms. In: Leuangthong, O., Deutsch, C.V. (eds.) Geostatistics Banff 2004, pp. 969–978. Springer, Berlin (2005)CrossRefGoogle Scholar
  57. 57.
    Park, K.A., Schiedt, C., Caers, J.: Simultaneous conditioning of multiple non-Gaussian geostatistical models to highly nonlinear data using distances in kernel space. In: Proceedings of the 8th International Geostatistical Congress, Santiago, Chile (2008)Google Scholar
  58. 58.
    Parra, A., Ortiz, J.M.: Conditional multiple-point simulation with a texture synthesis algorithm. In: IAMG 2009 Conference, Stanford University (2009)Google Scholar
  59. 59.
    Remy, N., Boucher, A., Wu, J.: Applied Geostatistics with SGeMS: A User’s Guide. Cambridge University Press, Cambridge (2008)Google Scholar
  60. 60.
    Renard, P.: Stochastic hydrogeology: what professionals really need? Ground Water 45, 531–541 (2007)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Ronayne, M., Gorelick, S., Caers, J.: Identifying discrete geologic structures that produce anomalous hydraulic response: an inverse modeling approach. Water Resour. Res. 44, W08426 (2008)CrossRefGoogle Scholar
  62. 62.
    Sahimi, M.: Large-scale porous media and wavelet transformations. Comput. Sci. Eng. 5 (4), 75–87 (2003)CrossRefGoogle Scholar
  63. 63.
    Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley-VCH, Weinheim (2011)zbMATHCrossRefGoogle Scholar
  64. 64.
    Skorstad, A., Hauge, R., Holden, L.: Well conditioning in a fluvial reservoir model. Math. Geol. 31, 857–872 (1999)CrossRefGoogle Scholar
  65. 65.
    Srivastava, R.: An overview of stochastic methods for reservoir characterization. In: Chambers, R.L. (ed.) Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies, Computer applications, vol. 3, p. 380. AAPG, Tulsa (1994)Google Scholar
  66. 66.
    Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., Besson, O.: An improved parallel multiple-point algorithm using a list approach. Math. Geosci. 43, 305–328 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Straubhaar, J., Walgenwitz, A., Renard, P., Froidevaux, R.: Optimization issues in 3D multipoint statistics simulation. Paper presented at Geostats 2008, Santiago, Chile (2008)Google Scholar
  68. 68.
    Strebelle, S.: Conditional simulation of complex geological structures using multiple-point geostatistics. Math. Geol. 34, 1–22 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Strebelle, S., Payrazyan, K., Caers, J.: Modeling of a deepwater turbidite reservoir conditional to seismic data using multiple-point geostatistics. SPE paper 77425 (2002)Google Scholar
  70. 70.
    Suzuki, S., Caers, J.: A distance-based prior model parameterization for constraining solutions of spatial inverse problems. Math. Geosci. 40, 445–469 (2008)zbMATHCrossRefGoogle Scholar
  71. 71.
    Suzuki, S., Caumon, G., Caers, J.: Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization. Comput. Geosci. 12, 105–119 (2008)zbMATHCrossRefGoogle Scholar
  72. 72.
    Suzuki, S., Strebelle, S.: Real-time post-processing method to enhance multiple-point statistics simulation. Paper presented at Petroleum Geostatistics 2007, Cascais, Portugal (2007)Google Scholar
  73. 73.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition & Matlab Intro: Pattern Recognition. Academic, New York (2007)Google Scholar
  74. 74.
    Tjelmeland, H.: Stochastic models in reservoir characterization and Markov random fields for compact objects. Doctoral dissertation, Norwegian University of Science and Technology, Trondheim (1996)Google Scholar
  75. 75.
    Tjelmeland, H., Eidsvik, J.: Directional Metropolis–Hastings updates for posteriors with non linear likelihood. In: Leuangthong, O., Deutsch, C.V. (eds.) Geostatistics, pp. 95–104. Springer, Banff (2004)Google Scholar
  76. 76.
    Vargas-Guzmán, J.A.: Unbiased resource evaluations with kriging and stochastic models of heterogeneous rock properties. Nat. Resour. Res. 17, 245–254 (2008)CrossRefGoogle Scholar
  77. 77.
    Vargas-Guzmán, J.A.: The Kappa model of probability and higher-order rock sequences. Comput. Geosci 15, 661–671 (2011)CrossRefGoogle Scholar
  78. 78.
    Wu, J., Zhang, T., Journel, A.G.: A fast FILTERSIM simulation with score-based distance. Math. Geosci. 47, 773–788 (2008)CrossRefGoogle Scholar
  79. 79.
    Zhang, T., Switzer, P., Journel, A.G.: Filter-based classification of training image patterns for spatial simulation. Math. Geol. 38, 63–80 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Pejman Tahmasebi
    • 1
  • Ardeshir Hezarkhani
    • 1
  • Muhammad Sahimi
    • 2
  1. 1.Department of Mining, Metallurgy and Petroleum EngineeringAmir Kabir University of TechnologyTehranIran
  2. 2.Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations