Computational Geosciences

, Volume 16, Issue 2, pp 247–259 | Cite as

Fault displacement modelling using 3D vector fields

  • Frode GeorgsenEmail author
  • Per Røe
  • Anne Randi Syversveen
  • Oddvar Lia
Original Paper


In history matching and sensitivity analysis, flexibility in the structural modelling is of great importance. The ability to easily generate multiple realizations of the model will have impact both on the updating workflow in history matching and uncertainty studies based on Monte Carlo simulations. The main contribution to fault modelling by the work presented in this paper is a new algorithm for calculating a 3D displacement field applicable to a wide range of faults due to a flexible representation. This gives the possibility to apply this field to change the displacement and thereby moving horizons and fault lines. The fault is modelled by a parametric format where the fault has a reference plane defined by a centre point, dip and strike angles. The fault itself is represented as a surface defined by a function z = f(x,y), where x, y and z are coordinates local to the reference plane, with the z-axis being normal to the plane. The displacement associated with the fault outside the fault surface is described by a 3D vector field. The displacement on the fault surface can be found by identifying the intersection lines between horizons and the fault surface (fault lines), and using kriging techniques to fill in values at all points on the surface. Away from the fault surface the displacement field is defined by a monotonic decreasing function which ensures zero displacement at a specified distance from the fault. An algorithm is developed where the displacement can be increased or decreased according to user-defined parameters. This means that the whole displacement field is changed and points on horizons around the fault can be moved accordingly by applying the modified displacement field on them. The interaction between several faults influencing the same points is taken care of by truncation rules and the ordering of the faults. The method is demonstrated on a realistic synthetic case based on a real reservoir.


Fault modelling Fault displacement History matching Uncertainty analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnett, J.A.M., Mortimer, J., Rippon, J.H., Walsh, J.J., Watterson, J.: Displacement geometry in the volume containing a single normal fault. Am. Assoc. Pet. Geol. Bull. 71(8), 925–937 (1987)Google Scholar
  2. 2.
    Cardozo, N., Røe, P., Soleng, H.H., Fredman, N., Tveranger, J., Schueller, S.: A methodology for efficiently populating faulted corner point grids with strain. Pet. Geosci. 14(2), 205–216 (2008)CrossRefGoogle Scholar
  3. 3.
    Caumon, G., Lepage, F., Sword, C.H., Mallet, J.-L.: Building and editing a sealed geological model. Math. Geol. 36(4), 405–424 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Caumon, G., Tertois, A.L., Zhang, L.: Elements for stochastic structural perturbation of stratigraphic models. EAGE Petroleum Geostatistics, Extended Abstracts, A02 (2007)Google Scholar
  5. 5.
    Caumon, G., Collon-Dronaillet, P., Le Carlier de Veslud C., Viseur, S., Sausse, J.: Surface-based 3D modeling of geological structures. Math. Geosci. 41(8), 927–945 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Gibson, J.R., Walsh, J.J., Watterson, J.: Modelling of bed contours and cross-sections adjacent to planar normal faults. J. Struct. Geol. 11(3), 317–328 (1989)CrossRefGoogle Scholar
  7. 7.
    Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University Press, pp. 125–184 (1997)Google Scholar
  8. 8.
    Hoffman, K.S., Neave, J.W.: The fused fault block approach to fault network modelling. In: Jolley, S.J., Barr. D., Walsh, J.J., Knipe, R.J. (eds.) Structurally Complex Reservoirs. Geological Society, London, Special Publication, vol. 292, pp. 75–87 (2007)Google Scholar
  9. 9.
    Holden, L., Mostad, P., Nielsen, B.F., Gjerde, J., Townsend, C., Ottesen, S.: Stochastic structural modeling. Math. Geol. 35(8), 899–914 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hollund, K., Mostad, P., Nielsen, B.F., Holden, L., Gjerde, J., Contursi, M.G., McCann, A.J., Townsend, C., Sverdrup, E.: Havana - a fault modeling tool. In: Koestler, A.G., Hunsdale, R. (eds.) Hydrocarbon Seal Quantification. Norwegian Petroleum Society (NPF), Special Publications, vol. 11, pp. 157–171 (2002)Google Scholar
  11. 11.
    Lecour, M., Cognot, R., Duvinage, I., Thore, P., Dulac, J-C.: Modeling of stochastic faults and fault networks in a structural uncertainty study. Pet. Geosci. 7, S31–S42 (2001)CrossRefGoogle Scholar
  12. 12.
    Mallet, J.-L.: Space-time mathematical framework for sedimentary geology. Math. Geol. 36(1), 1–32 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Manzocchi, T., Heath, A.E., Palananthakumar, B., Childs, C., Walsh, J.J.: Faults in conventional flow simulation models: a consideration of representational assumptions and geological uncertainties. Pet. Geosci. 14(1), 91–110 (2008)CrossRefGoogle Scholar
  14. 14.
    Rivenæs, J.C., Otterlei, C. Zachariassen, E., Dart, C., Sjøholm, J.: A 3D stochastic model integrating depth, fault and property uncertainty for planning robust wells, Njord Field, Offshore Norway. Pet. Geosci. 11(1), 57–65 (2005)CrossRefGoogle Scholar
  15. 15.
    RMS 2010.1: User Guide. Roxar Software Solutions, Stavanger, Norway (2010)Google Scholar
  16. 16.
    Røe, P., Abrahamsen, P., Georgsen, F., Syversveen, A.R., Lia, O.: Flexible simulation of faults. In: SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September, SPE 134912 (2010)Google Scholar
  17. 17.
    Seiler, A., Rivenæs, J.C., Aanonsen, S.I., Evensen, G.: Structural uncertainty modelling and updating by production data integration. In: SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, UAE, 19–21 October, SPE 125352 (2009)Google Scholar
  18. 18.
    Seiler, A., Aanonsen, S.I., Evensen, G., Lia, O.: An elastic grid approach for fault uncertainty modelling and updating using the Ensemble Kalman filter. In: SPE Europec/EAGE Annual Conference and Exhibition, Barcelona, Spain, 14–17 June, SPE 130422-PP (2010)Google Scholar
  19. 19.
    Thore, P., Shtuka, A., Lecour, M., Ait-Ettajer, T., Cognot, R.: Structural uncertainties: determination, management, and applications. Geophysics 67(3), 840–852 (2002)CrossRefGoogle Scholar
  20. 20.
    Yielding, G., Freeman, B., Needham, D.T.: Quantitative fault seal prediction. Am. Assoc. Pet. Geol. Bull. 81(6), 897–917 (1997)Google Scholar
  21. 21.
    Walsh, J.J., Watterson, J.: Distributions of cumulative displacement and seismic slip on a single normal fault surface. J. Struct. Geol. 9(8), 1039–1046 (1987)CrossRefGoogle Scholar
  22. 22.
    Walsh, J.J., Watterson, J.: Displacement gradients on fault surfaces. J. Struct. Geol. 11(3), 307–316 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Frode Georgsen
    • 1
    Email author
  • Per Røe
    • 1
  • Anne Randi Syversveen
    • 1
  • Oddvar Lia
    • 2
  1. 1.Norwegian Computing CenterOsloNorway
  2. 2.Statoil ASATrondheimNorway

Personalised recommendations