Computational Geosciences

, Volume 16, Issue 2, pp 455–466

Sampling error distribution for the ensemble Kalman filter update step

Open Access
Original Paper
  • 375 Downloads

Abstract

In recent years, data assimilation techniques have been applied to an increasingly wider specter of problems. Monte Carlo variants of the Kalman filter, in particular, the ensemble Kalman filter (EnKF), have gained significant popularity. EnKF is used for a wide variety of applications, among them for updating reservoir simulation models. EnKF is a Monte Carlo method, and its reliability depends on the actual size of the sample. In applications, a moderately sized sample (40–100 members) is used for computational convenience. Problems due to the resulting Monte Carlo effects require a more thorough analysis of the EnKF. Earlier we presented a method for the assessment of the error emerging at the EnKF update step (Kovalenko et al., SIAM J Matrix Anal Appl, in press). A particular energy norm of the EnKF error after a single update step was studied. The energy norm used to assess the error is hard to interpret. In this paper, we derive the distribution of the Euclidean norm of the sampling error under the same assumptions as before, namely normality of the forecast distribution and negligibility of the observation error. The distribution depends on the ensemble size, the number and spatial arrangement of the observations, and the prior covariance. The distribution is used to study the error propagation in a single update step on several synthetic examples. The examples illustrate the changes in reliability of the EnKF, when the parameters governing the error distribution vary.

References

  1. 1.
    Aanonsen, S.I., Aavatsmark, I., Barkve, T., Cominelli, A., Gonard, R., Gosselin, O., Kolasinski, M., Reme, H.: Effect of scale dependent data correlations in an integrated history matching loop combining production data and 4D seismic data. In: Proc. SPE Reservoir Simulation Symposium, paper SPE 79665. Houston, Texas (2003)Google Scholar
  2. 2.
    Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Valles, B.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)Google Scholar
  3. 3.
    Bennett, A.F.: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Chen, C., Wang, Y., Li, G., Reynolds, A.: Closed-loop reservoir management on the Brugge test case. Computational Geosciences 14, 691–703 (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Davies, R.B.: Algorithm as 155: the distribution of a linear combination of χ 2 random variables. J. R. Stat. Soc., Ser. C, Appl. Stat. 29(3), 323–333 (1980)CrossRefMATHGoogle Scholar
  6. 6.
    Dong, Y., Oliver, D.S.: Quantitative use of 4D seismic data for reservoir description. SPE J. 10(1), 91–99 (2005)Google Scholar
  7. 7.
    Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162 (1994)CrossRefGoogle Scholar
  8. 8.
    Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)CrossRefGoogle Scholar
  9. 9.
    Evensen, G.: Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn. 54, 539–560 (2004)CrossRefGoogle Scholar
  10. 10.
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd edn. Springer, New York (2009)Google Scholar
  11. 11.
    Evensen, G., van Leeuwen, P.J.: An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128(6), 1852–1867 (2000)CrossRefGoogle Scholar
  12. 12.
    Fahimuddin, A., Mannseth, T., Aanonsen, S.I.: Effect of large number of measurements on the performance of EnKF model updating. In: Proceedings of the 11th European Conference on the Mathematics of Oil Recovery (ECMOR XI). Bergen, Norway (2008)Google Scholar
  13. 13.
    Feng, T., Mannseth, T.: Impact of time-lapse seismic data for permeability estimation. Comput. Geosci. 14, 705–719 (2010)CrossRefMATHGoogle Scholar
  14. 14.
    Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal. 98(2), 227–255 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gupta, A.K., Nagar, D.K.: Matrix variate distributions. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 104. Chapman & Hall/CRC, Boca Raton (2000)MATHGoogle Scholar
  16. 16.
    Hayakawa, T.: On the distribution of a quadratic form in a multivariate normal sample. Ann. Inst. Stat. Math. 18, 191–201 (1966)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  18. 18.
    Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126(3), 796–811 (1998)CrossRefGoogle Scholar
  19. 19.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. Am. Soc. Mech. Eng.–J. Basic Eng. 82(Series D), 35–45 (1960)Google Scholar
  20. 20.
    Kepert, J.D.: On ensemble representation of the observation-error covariance in the ensemble Kalman filter. Ocean Dyn. 54, 561–569 (2004)CrossRefGoogle Scholar
  21. 21.
    Kovalenko, A., Mannseth, T., Nævdal, G.: Error estimate for the ensemble Kalman filter update step. In: Proceedings of the 12th European Conference on the Mathematics of Oil Recovery (ECMOR XII). Oxford, UK (2010)Google Scholar
  22. 22.
    Nævdal, G., Johnsen, L.M., Aanonsen, S.I., Vefring, E.H.: Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J. 10(1), 66–74 (2005)Google Scholar
  23. 23.
    Nævdal, G., Mannseth, T., Vefring, E.H.: Near-well reservoir monitoring through ensemble Kalman filter. In: The 2002 SPE/DOE Improved Oil Recovery Symposium, Paper SPE 75235. Tulsa, Oklahoma (2002)Google Scholar
  24. 24.
    Oliver, D., Chen, Y.: Ensemble-based closed-loop optimization applied to Brugge field. SPE Reserv. Evalu. Eng. 13(1), 56–71 (2010)Google Scholar
  25. 25.
    Oliver, D., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15, 1–37 (2010)Google Scholar
  26. 26.
    Skjervheim, J.A., Evensen, G., Aanonsen, S.I., Ruud, B.O., Johansen, T.A.: Incorporating 4D seismic data in reservoir simulation models using ensemble Kalman filter. SPE J. 12(3), 282–292 (2007)Google Scholar
  27. 27.
    Srivastava, M.S.: Singular Wishart and multivariate beta distributions. Ann. Stat. 31(5), 1537–1560 (2003)CrossRefMATHGoogle Scholar
  28. 28.
    Wackernagel, H., Bertino, L.: Geostatistics and Sequential Data Assimilation. Springer, New York (2005)Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Andrey Kovalenko
    • 1
    • 2
  • Trond Mannseth
    • 1
    • 2
  • Geir Nævdal
    • 2
    • 3
  1. 1.Uni CIPRBergenNorway
  2. 2.Department of MathematicsUniversity of BergenBergenNorway
  3. 3.International Research Institute of StavangerBergenNorway

Personalised recommendations