Computational Geosciences

, Volume 15, Issue 3, pp 463–475

Multi-scale European Soil Information System (MEUSIS): a multi-scale method to derive soil indicators

  • Panos Panagos
  • Marc Van Liedekerke
  • Luca Montanarella
Original Paper


The Multi-scale Soil Information System (MEUSIS) can be a suitable framework for building a nested system of soil data that could facilitate interoperability through a common coordinate reference system, a unique grid coding database, a set of detailed and standardized metadata, and an open exchangeable format. In the context of INSPIRE Directive, MEUSIS may be implemented as a system facilitating the update of existing soil information and accelerating the harmonization of various soil information systems. In environmental data like the soil one, it is common to generalize accurate data obtained at the field to coarser scales using either the pedotransfer rules or knowledge of experts or even some statistical solutions which combine single values of spatially distributed data. The most common statistical process for generalization is averaging the values within the study area. In this paper, we do not present a simple averaging of numerical values without any further processed information. The upscaling process is accompanied with significant statistical analysis in order to demonstrate the method suitability. The coarser resolution nested grids cells (10 × 10 km) represent broad regions where the calculated soil property (e.g., organic carbon) can be accurately upscaled. Multi-scaled approaches are urgently required to integrate different disciplines (such as Statistics) and provide a meta-model platform to improve current mechanistic modeling frameworks, request new collected data, and identify critical research questions. Past papers have described in detail the upscaling methodology while our present approach is to demonstrate an important application of this methodology accompanied with statistical evidence.


Multi-scale soil information system MEUSIS Upscaling Soil data Descriptive statistics INSPIRE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beven, K.J.: Changing ideas in hydrology—the case of physically-based models. J. Hydrol. 105(1–2), 157–172 (1989)CrossRefGoogle Scholar
  2. 2.
    Bierkens, M.F.P., Finke, P.A., De Willigen, P.: Upscaling and Downscaling. Methods for Environmental Research. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  3. 3.
    Bouma, J., Hoosbeek, M.R.: Obtaining soil and land quality indicators using research chains and geostatistical methods. Nutr. Cycl. Agroecosyst. 50, 35–50 (1998)CrossRefGoogle Scholar
  4. 4.
    Camarero, L., Garcia-Pausas, J., Huguet, C.: A method for upscaling soil parameters for use in a dynamic modelling assessment of water quality in the Pyrenees. Sci. Total Environ. 407(5), 1701–1714 (2009)CrossRefGoogle Scholar
  5. 5.
    CEC: Soil Thematic Strategy (COM(2006) 232) of the European Commission (2006), Accessed 05/10/2010
  6. 6.
    Cheng, Q.: Modeling local scaling properties for multiscale mapping. Vadose Zone J. 7(2), 525–532 (2008)CrossRefGoogle Scholar
  7. 7.
    Christy, C.D.: Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Comput. Electron. Agric. 61(1), 10–19 (2008)CrossRefGoogle Scholar
  8. 8.
    Dikmen, O., Akin, L., Alpaydin, E.: Estimating distributions in genetic algorithms. comput. Inf. Sci. 2869/2003, 521–528 (2003)Google Scholar
  9. 9.
    Ewert, F., van Keulen, H., van Ittersum M.K., Giller, K.E., Leffelaar, P.A., Roetter, R.P.: Multi-scale analysis and modelling of natural resource management options. In: Proceedings of 3rd Biennial meeting of the International Environmental Modelling and Software Society (2006)Google Scholar
  10. 10.
    Heuvelink, G.B.M., Pebesma, E.J.: Spatial aggregation and soil process modelling. Geoderma 89, 47–65 (1999)CrossRefGoogle Scholar
  11. 11.
    Hewett, C., Quinn, P., Heathwaite, A., Doyle, A., Burke, S., Whitehead, P., Lerner, D.: A multi-scale framework for strategic management of diffuse pollution. Environ. Model. Softw. 24, 74–85 (2009)CrossRefGoogle Scholar
  12. 12.
    GMES, Global Monitoring for Environment and Security. Accessed 05/10/2010
  13. 13.
    INSPIRE: Directive 2007/2/EC of the European Parliament and of the Council (14 March 2007): establishing an Infrastructure for Spatial Information in the European Community (2007), Accessed 05/10/2010
  14. 14.
    Kokkonen, T., Koivusalo, H., Laurén, A., Penttinen, S., Starr, M., Kellomäki, S., Finér, L.: Implications of processing spatial data from a forested catchment for a hillslope hydrological model. Ecol. Model. 199(4), 393–408 (2006)CrossRefGoogle Scholar
  15. 15.
    Lal, R.: Soil Carbon sequestration impacts on global climate change and food Security. Science 304, 1623–1627 (2004)CrossRefGoogle Scholar
  16. 16.
    Lembo, A.J., Lew, M.Y., Laba, M., Baveye, P.: Use of spatial SQL to assess the practical significance of the modifiable areal unit problem. Comput. Geosci. 32, 270–274 (2006)CrossRefGoogle Scholar
  17. 17.
    McBratney, A.B.: Some considerations on methods for spatially aggregating and disaggregating soil information. Nutr. Cycl. Agroecosyst. 50, 51–62 (1998)CrossRefGoogle Scholar
  18. 18.
    Nachtergaele, F.: The “soils” to be classified in the world reference base for soil resources. Eurasian Soil Sci. 38(SUPPL. 1), S13–S19 (2005)Google Scholar
  19. 19.
    Panagos, P., Van Liedekerke, M., Lado Rodriguez, L., Montanarella, L.: MEUSIS: multi-scale european soil information system. GEOconnexion International Magazine 7(2), 39–41 (2008)Google Scholar
  20. 20.
    Skalský, R.: Multiscale European soil information system—pilot project for Slovakia. In: Proceedings No. 28, 2006 Soil Science and Conservation Research Institute, Bratislava, pp 89–98 (2006)Google Scholar
  21. 21.
    Stewart, J.B., Engman, E.T., Feddes, R.A., Kerr, Y.H.: Scaling up in hydrology using remote sensing: summary of a Workshop. Int. J. Remote Sens. 19(1), 181–194 (1998)CrossRefGoogle Scholar
  22. 22.
    Thwaites, R.N., Slater, B.K.: Soil-landscape resource assessment for plantations—a conceptual framework towards an explicit multi-scale approach. For. Ecol. Manag. 138(1–3), 123–138 (2000)CrossRefGoogle Scholar
  23. 23.
    Tuchyna, M.: Establishment of spatial data infrastructure within the environmental sector in Slovak Republic. Environ. Model. Softw. 21(11), 1572–1578 (2006)CrossRefGoogle Scholar
  24. 24.
    Van Bodegom, P.M., Verburg, P.H., Stein, A., Adiningsih, S., Denier van der Gon, H.A.C.: Effects of interpolation and data resolution on methane emission estimates from rice paddies. Environ. Ecol. Stat. 9(1), 5–26 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wilding, L.P., Lin, H.: Advancing the frontiers of soil science towards a geoscience. Geoderma 131(3–4), 257–274 (2005)Google Scholar
  26. 26.
    Wood, B.: The role of scaling laws in upscaling. Adv. Water Resour. 32(5), 723–736 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Panos Panagos
    • 1
  • Marc Van Liedekerke
    • 1
  • Luca Montanarella
    • 1
  1. 1.Joint Research Centre of the European Commission Institute for Environment and SustainabilityIspraItaly

Personalised recommendations