Computational Geosciences

, Volume 15, Issue 1, pp 155–166 | Cite as

Computations with finite element methods for the Brinkman problem

Original Paper

Abstract

Various finite element families for the Brinkman flow (or Stokes–Darcy flow) are tested numerically. Particularly, the effect of small permeability is studied. The tested finite elements are the MINI element, the Taylor–Hood element, and the stabilized equal order methods. The numerical tests include both a priori analysis and adaptive methods.

Keywords

Brinkman equation Stokes equation Darcy equation Nitsche’s method MINI Taylor–Hood Stabilized methods A posteriori estimation Adaptive computation 

Mathematics Subject Classification (2010)

65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allaire, G.: Homogenization of the navier-stokes equations in open sets perforated with tiny holes. I. abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113(3), 209–259 (1990)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Allaire, G.: Homogenization of the navier-stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113(3), 261–298 (1990)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Arbogast, T., Lehr, H.L.: Homogenization of a darcy-stokes system modeling vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984). (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Badia, S., Codina, R.: Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47(3), 1971–2000 (2009)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the stokes problem in the primitive variables. Numer. Math. 33(2), 211–224 (1979)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boffi, D.: Stability of higher order triangular Hood-Taylor methods for the stationary stokes equations. Math. Models Methods Appl. Sci. 4(2), 223–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boffi, D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34(2), 664–670 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brezzi, F., Falk, R.S.: Stability of higher-order hood-taylor methods. SIAM J. Numer. Anal. 28(3), 581–590 (1991)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Efficient Solutions of Elliptic Systems (Kiel, 1984). Notes Numer. Fluid Mech., vol. 10, pp. 11–19. Vieweg, Braunschweig (1984)Google Scholar
  11. 11.
    Falk, R.S.: A fortin operator for two-dimensional taylor-hood elements. M2AN Math. Model. Numer. Anal. 42(3), 411–424 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Franca, L.P., Hughes, T.J.R., Stenberg, R.: Stabilized finite element methods. In: Gunzburger, M., Nicolaides, R.A. (eds.) Incompressible Computational Fluid Dynamics, chapter 4, pp. 87–107. Cambridge University Press (1993)Google Scholar
  13. 13.
    Franca, L.P., Stenberg, R.: Error analysis of galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28(6), 1680–1697 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hansbo, P., Juntunen, M.: Weakly imposed Dirichlet boundary conditions for the brinkman model of porous media flow. Appl. Numer. Math. 59, 1274–1289 (2009)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hughes, T.J.R., Franca, L.P.: A new finite element formulation for computational fluid dynamics. VII. The stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Juntunen, M., Stenberg, R.: Analysis of finite element methods for the Brinkman problem. Calcolo, (2009). doi:10.1007/s10092-009-0017-6 Google Scholar
  17. 17.
    Juntunen, M., Stenberg, R.: Nitsche’s method for general boundary conditions. Math. Comp. 78(267), 1353–1374 (2009)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Juntunen, M., Stenberg, R.: A residual based a posteriori estimator for the reaction-diffusion problem. C. R. Acad. Sci. Paris, Ser. I 347, 555–558 (2009)MATHMathSciNetGoogle Scholar
  19. 19.
    Lévy, T.: Loi de Darcy ou loi de Brinkman? C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292(12), 871–874, Erratum (17):1239 (1981)MATHGoogle Scholar
  20. 20.
    Mardal, K., Tai, X., Winther, R.: A robust finite element method for darcy-stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mardal,K., Winther, R.: Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 98, 305–327 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mardal, K., Winther, R.: Uniform preconditioners for the time dependent stokes problem. Numer. Math. 103, 171–172 (2006)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Nitsche, J.A.: Über ein variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1970/71)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rajagopal, K.R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17(2), 215–252 (2007)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19(1), 111–143 (1985)MATHMathSciNetGoogle Scholar
  26. 26.
    Stenberg, R.: On some three-dimensional finite elements for incompressible media. Comput. Methods Appl. Mech. Eng. 63(3), 261–269 (1987)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Stenberg, R.: Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54, 495–508 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Antti Hannukainen
    • 1
  • Mika Juntunen
    • 1
  • Rolf Stenberg
    • 1
  1. 1.Department of Mathematics and Systems AnalysisHelsinki University of TechnologyHelsinkiFinland

Personalised recommendations