Advertisement

Computational Geosciences

, Volume 15, Issue 1, pp 69–85 | Cite as

Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications

  • Scott L. PainterEmail author
Original paper

Abstract

Water in the subsurface of the Earth’s cold regions—and possibly the subsurface of Mars—resides in the liquid, vapor, and ice phases. However, relatively few simulations addressing full three-phase, nonisothermal water dynamics in below-freezing porous media have been undertaken. This paper presents a nonisothermal, three-phase approach to modeling water migration in partially frozen porous media. Conservation equations for water (as ice, liquid, and vapor) and a single gas species (in the gas phase and dissolved in water) are coupled to a heat transport equation and solved by a finite-volume method with fully implicit time stepping. Particular attention is given to the method of spatial differencing when the pore space is partially filled with ice. The numerical model is able to reproduce freezing-induced water redistribution observed in laboratory experiments. Simulations of Earth permafrost dynamics and of the formation and evolution of a planetary-scale cryosphere on Mars demonstrate the new capabilities.

Keywords

Multiphase flow Freezing soils Mars Permafrost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perfect, E., Groenevelt, P.H., Kay, B.D.: Transport phenomena in frozen porous media. In: Bear, J., Corapcioglu, M.Y. (eds.) Transport Process in Porous MediaKluwer, Netherlands (1991)Google Scholar
  2. 2.
    Miller, R.D.: Freezing phenomena in soils. In: Hillel, D. (ed.) Application of Soil Physics. Academic, New York (1980)Google Scholar
  3. 3.
    Clifford, S.M.: The role of thermal vapor diffusion in the subsurface hydrological evolution of Mars. Geophys. Res. Lett. 18(11), 2055–2058 (1991)CrossRefGoogle Scholar
  4. 4.
    Harlan, R.L.: Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour. Res. 9(5), 1314–1323 (1973)CrossRefGoogle Scholar
  5. 5.
    Jame, Y.-W., Norum, D.I.: Heat and mass transfer in freezing unsaturated porous medium. Water Resour. Res. 16(4), 811–819 (1980)CrossRefGoogle Scholar
  6. 6.
    Guymon, G.L., Luthun, J.N.: A coupled heat and moisture transport model for arctic soils. Water Resour. Res. 10(5), 915–1001 (1974)CrossRefGoogle Scholar
  7. 7.
    Fuchs, M., Campbell, G.S., Papendick, R.I.: An analysis of sensible and latent heat flow in a partially frozen unsaturated soil. Soil Sci. Soc. Am. J. 42(3), 379–385 (1978)CrossRefGoogle Scholar
  8. 8.
    Hansson, K., Simunek, J., Mizoguchi, M., Lundin, L.-C., van Genuchten, M.Th.: Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications. Vadose Zone J. 3, 693–704 (2004)Google Scholar
  9. 9.
    Panday, S., Corapcioglu, M.Y.: Theory of phase-separate multicomponent contaminant transport in frozen soils. J. Contam. Hydrol. 16, 235–269 (1994)CrossRefGoogle Scholar
  10. 10.
    White, M.D.: Theory and numerical application of subsurface flow and transport for transient freezing conditions. In: Proceedings of the Fifteenth Annual American Geophysical Hydrology Days, 339–352 (1995)Google Scholar
  11. 11.
    White, M.D., Oostrom, M.: STOMP Subsurface Transport Over Multiple Phases: Users Guide PNNL-15782. Pacific Northwest National Laboratory, Richland (2006)Google Scholar
  12. 12.
    Pruess, K., Oldenburg, C., Moridis, G.: Tough 2 User’s Guide, Version 2, LBNL-43134. Lawrence Berkeley National Laboratory, Berkeley (1999)CrossRefGoogle Scholar
  13. 13.
    Lichtner, P.C.: Continuum formulation of multicomponent-multiphase reactive transport. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Reactive Transport in Porous Media, pp. 1–9. Mineralogical Society of America, Washington (1996)Google Scholar
  14. 14.
    Leverett, M.S., Lewis, W.B.: Steady flow of gas-oil-water mixtures through unconsolidated sands. Trans. AIME, Am. Inst. Min. Metall. Pet. Eng. 142, 152–169 (1947)Google Scholar
  15. 15.
    Grant, S.A., Sletten, R.S.: Calculating capillary pressure in frozen and ice-free soils below the melting temperature. Environ. Geol. 42(2), 130–136 (2002)CrossRefGoogle Scholar
  16. 16.
    Brun, M., Lallemand, A., Quinson, J.-F., Eyraud, C.: A new method for simultaneous determination of the size and shape of pores: the thermoporometry. Thermochim. Acta 21, 59–88 (1977)CrossRefGoogle Scholar
  17. 17.
    Loch, J.P.G.: Thermodynamic equilibrium between ice and water in porous media. Soil Sci. 126, 77–80 (1977)CrossRefGoogle Scholar
  18. 18.
    van Genuchten, M.Th.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  19. 19.
    Vogel, T., van Genuchten, M.Th., Cislerova, M.: Effect of the shape of the soil hydraulic functions near saturation on variably saturated flow predictions. Adv. Water Resour. 24(2), 133–144 (2000)CrossRefGoogle Scholar
  20. 20.
    Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976)CrossRefGoogle Scholar
  21. 21.
    Andersland, O.B., Ladanyi, B.: An Introduction to Frozen Ground Engineering. Chapman and Hall, New York (1994)Google Scholar
  22. 22.
    Peters-Lidard, C.D., Blackburn, E., Liang, X., Wood, E.F.: The effect of thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. 55, 1209–1224 (1998)CrossRefGoogle Scholar
  23. 23.
    Clifford, S.M., Hillel, D.: Knudsen diffusion: the effect of small pore size and low gas pressure on gaseous transport in soil. Soil Sci. 141, 289–297 (1986)CrossRefGoogle Scholar
  24. 24.
    Bird, R.A., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2003)Google Scholar
  25. 25.
    Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1998)Google Scholar
  26. 26.
    Millington, R.J., Quirk, J.M.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)CrossRefGoogle Scholar
  27. 27.
    Narasimhan, T.N., Witherspoon, P.A.: An integrated finite-difference method for analyzing fluid flow in porous media. Water Resour. Res. 12(1), 57–64 (1976)CrossRefGoogle Scholar
  28. 28.
    Saad, Y.: Iterative Methods for Sparse Linear Equations, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)Google Scholar
  29. 29.
    Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. Society of Industrial and Applied Mathematics, Philadelphia (2006)zbMATHGoogle Scholar
  30. 30.
    Mizogouchi, M.: Water, heat and salt transport in freezing soil. Ph.D. Thesis. (In Japanese) University of Tokyo (1990)Google Scholar
  31. 31.
    Painter, S.: Three-phase simulations of moisture movement in the Martian subsurface. In: Proceedings of the 9th International Conference on Mars (2007)Google Scholar
  32. 32.
    Manning, C.E., Ingebritson, S.E.: Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev. Geophys. 37, 127–150 (1999)CrossRefGoogle Scholar
  33. 33.
    Clifford, S.M., Parker, T.J.: The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current State of the northern plains. Icarus 154, 40–79 (2001)CrossRefGoogle Scholar
  34. 34.
    Harrison, K.P., Grimm R.E.: Tharsis recharge: a source of groundwater for Martian outflow channels. Geophys. Res. Lett. 31, L14703 (2004) doi: 10.1029/2004GL020502 CrossRefGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  1. 1.Geosciences and Engineering DivisionSouthwest Research Institute®San AntonioUSA
  2. 2.Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations