Advertisement

Computational Geosciences

, Volume 14, Issue 2, pp 311–317 | Cite as

Analytical computation of arc menisci configuration under primary drainage in convex capillary cross sections

  • Martin Held
Original Paper

Abstract

We analyze the geometric set-up of Lindquist’s “The Geometry of Primary Drainage” (J Colloid Interface Sci 296(2):655–668, 2006) and show that his main equation, which models the arc menisci configuration under primary drainage in capillary tube cross sections, can be solved analytically for the special case of a convex cross section and the wetting angle being assumed 0. Our approach relies on the Voronoi diagram of the cross section and runs in O(n logn) time for an n-segment cross section. It requires only the solution of n − 2 second-degree polynomial equations.

Keywords

Primary drainage Arc menisci configuration Convex cross section Voronoi diagram Analytical solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chin, F., Snoeyink, J., Wang, C.: Finding the medial axis of a simple polygon in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Held, M.: VRONI: an engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Comput. Geom. Theory and Appl. 18(2), 95–123 (2001)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Lago, M., Araujo, M.: Threshold pressure in capillaries with polygonal cross section. J. Colloid Interface Sci. 243(1), 219–226 (2001)CrossRefGoogle Scholar
  5. 5.
    Langbein, D.: Capillary Surfaces: Shape–Stability–Dynamics, in Particular Under Weightlessness. No. 178 in Springer Tracts in Modern Physics. Springer, New York (2002). ISBN 978-3540418153CrossRefGoogle Scholar
  6. 6.
    Lindquist, W.: The geometry of primary drainage. J. Colloid Interface Sci. 296(2), 655–668 (2006)CrossRefGoogle Scholar
  7. 7.
    Mayer, R., Stowe, R.: J. Colloid Interface Sci. 20(8), 893–911 (1965)Google Scholar
  8. 8.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, New York (2000). ISBN 0-471-93430-5zbMATHGoogle Scholar
  9. 9.
    Princen, H.: Capillary phenomena in assemblies of parallel cylinders: I. capillary rise between two cylinders. J. Colloid Interface Sci. 30(1), 69–75 (1969)CrossRefGoogle Scholar
  10. 10.
    Princen, H.: Capillary phenomena in assemblies of parallel cylinders: II. capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 30(3), 359–371 (1969)CrossRefGoogle Scholar
  11. 11.
    Princen, H.: Capillary phenomena in assemblies of parallel cylinders: III. liquid columns between horizontal parallel cylinders. J. Colloid Interface Sci. 34(2), 171–184 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.FB ComputerwissenschaftenUniversität SalzburgSalzburgAustria

Personalised recommendations