Advertisement

Computational Geosciences

, Volume 14, Issue 3, pp 465–481 | Cite as

A global method for coupling transport with chemistry in heterogeneous porous media

  • Laila Amir
  • Michel KernEmail author
Original paper

Abstract

Modeling reactive transport in porous media, using a local chemical equilibrium assumption, leads to a system of advection–diffusion PDEs coupled with algebraic equations. When solving this coupled system, the algebraic equations have to be solved at each grid point for each chemical species and at each time step. This leads to a coupled non-linear system. In this paper, a global solution approach that enables to keep the software codes for transport and chemistry distinct is proposed. The method applies the Newton–Krylov framework to the formulation for reactive transport used in operator splitting. The method is formulated in terms of total mobile and total fixed concentrations and uses the chemical solver as a black box, as it only requires that one be able to solve chemical equilibrium problems (and compute derivatives) without having to know the solution method. An additional advantage of the Newton–Krylov method is that the Jacobian is only needed as an operator in a Jacobian matrix times vector product. The proposed method is tested on the MoMaS reactive transport benchmark.

Keywords

Geochemistry Transport in porous media Newton–Krylov methods Advection-diffusion-reaction equations 

Mathematics Subject Classifications (2000)

76V05 65M99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achdou, Y., Le Tallec, P., Nataf, F., Vidrascu, M.: A domain decomposition preconditioner for an advection–diffusion problem. Comput. Methods Appl. Mech. Eng. 184(2–4), 145–170 (2000). doi: 10.1016/S0045-7825(99)00227-3 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution, 2nd edn. CRC, Boca Raton (2005)Google Scholar
  3. 3.
    Ascher, U.M.: Numerical Methods for Evolutionary Differential Equations. Society for Industrial & Applied Mathematics, Philadelphia (2008)zbMATHGoogle Scholar
  4. 4.
    Carrayrou, J., Mosé, R., Behra, P.: Operator-splitting procedures for reactive transport and comparison of mass balance errors. J. Contam. Hydrol. 68(3–4), 239–268 (2004)CrossRefGoogle Scholar
  5. 5.
    Carrayrou, J., Dimier, A., Kern, M., Knabner, P., Leterrier, N.: GDR MoMaS benchmark—reactive transport. http://www.gdrmomas.org/ex_qualifications.html (2006)
  6. 6.
    Carrayrou, J., Kern, M., Knabner, P.: Reactive transport benchmark of MoMaS. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9157-7 Google Scholar
  7. 7.
    Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982). doi: 10.1137/0719025. http://link.aip.org/link/?SNA/19/400/1 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    de Dieuleveult, C.: Un modèle numérique global et performant pour le couplage géochimie-transport. Thèse de doctorat, Universitè de Rennes 1 (2008)Google Scholar
  9. 9.
    de Dieuleveult, C., Erhel, J.: A numerical model for coupling chemistry and transport. In: International Conference on SCIentific Computation And Differential Equations. SciCADE (2007)Google Scholar
  10. 10.
    de Dieuleveult, C., Erhel, J.: A global approach to reactive transport: application to the MoMaS benchmark. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9163-9 zbMATHGoogle Scholar
  11. 11.
    de Dieuleveult, C., Erhel, J., Kern, M.: A global strategy for solving reactive transport equations. J. Comput. Phys. 228(17), 6395–6410 (2009). doi: 10.1016/j.jcp.2009.05.044 zbMATHCrossRefGoogle Scholar
  12. 12.
    Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996). citeseer.ist.psu.edu/article/eisenstat94choosing.html zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)Google Scholar
  14. 14.
    Fahs, M., Carrayrou, J., Younes, A., Ackerer, P.: On the efficiency of the direct substitution approach for reactive transport problems in porous media. Water Air Soil Pollut. 193, 299–208 (2008). doi: 10.1007/s11270-008-9691-2 CrossRefGoogle Scholar
  15. 15.
    Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Frolkovič, P., Kačur, J.: Semi-analytica solution of a contaminant transport equation with nonlinear sorption in 1D. Comput. Geosci. 10(3), 279–290 (2006). doi: 10.1007/s10596-006-9023-9 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hammond, G.E., Valocchi, A., Lichtner, P.: Application of Jacobian-free Newton–Krylov with physics-based preconditioning to biogeochemical transport. Adv. Water Resour. 28, 359–376 (2005)CrossRefGoogle Scholar
  18. 18.
    Hoffmann, J., Kräutle, S., Knabner, P.: A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem. Comput. Geosci. (2009, this issue)Google Scholar
  19. 19.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  20. 20.
    Hoteit, H., Ackerer, P., Mosé, R.: Nuclear waste disposal simulations: couplex test cases: simulation of transport around a nuclear waste disposal site: the COUPLEX test cases (editors: Alain Bourgeat and Michel Kern). Comput. Geosci. 8, 99–124 (2004). doi: 10.1023/B:COMG.0000035074.37722.71. http://www.ingentaconnect.com/content/klu/comg/2004/00000008/00000002/05379190 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kanney, J.F., Miller, C.T., Kelley, C.T.: Convergence of iterative split operator approaches for approximating nonlinear reactive transport problems. Adv. Water Resour. 26(247–261) (2003)Google Scholar
  22. 22.
    Kačur, J., Malengier, B., Remešikova, M.: Solution of contaminant transport with equilibrium and non-equilibrium adsorption. Comput. Methods Appl. Mech. Eng. 194, 479–489 (2005). doi: 10.1016/j.cma.2004.05.017 zbMATHCrossRefGoogle Scholar
  23. 23.
    Kelley, C.T.: Iterative methods for linear and nonlinear equations. In: Frontiers in Applied Mathematics, vol. 16. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, with separately available software (1995)Google Scholar
  24. 24.
    Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004). doi: 10.1016/j.jcp.2003.08.010 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kräutle, S., Knabner, P.: A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Water Resour. Res. 41(W09414) (2005). doi: 10.1029/2004WR003624 zbMATHGoogle Scholar
  26. 26.
    Kräutle, S., Knabner, P.: A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions. Water Resour. Res. 43(W03429) (2007). doi: 10.1029/2005WR004465 Google Scholar
  27. 27.
    Lagneau, V., van der Lee, J.: HYTEC results of the MoMas reactive transport benchmark. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9159-5 Google Scholar
  28. 28.
    van der Lee, J.: CHESS, another speciation and surface complexation computer code. Tech. Rep. LHM/RD/93/39, CIG École des Mines de Paris, Fontainebleau (1993)Google Scholar
  29. 29.
    Lucille, P.L., Burnol, A., Ollar, P.: Chemtrap: a hydrogeochemical model for reactive transport in porous media. Hydrol. Process. 14, 2261–2277 (2000)CrossRefGoogle Scholar
  30. 30.
    Mayer, K., MacQuarrie, K.: Solution of the MoMaS reactive transport benchmark with MIN3P—model formulation and simulation results. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9158-6 Google Scholar
  31. 31.
    Mazzia, A., Bergamaschi, L., Putti, M.: A time-splitting technique for the advection-dispersion equation in groundwater. J. Comput. Phys. 157(1), 181–198 (2000). doi: 10.1006/jcph.1999.6370 zbMATHCrossRefGoogle Scholar
  32. 32.
    Morel, F.M.M., Hering, J.G.: Principles and Applications of Aquatic Chemistry. Wiley, New York (1993)Google Scholar
  33. 33.
    Parkhurst, D.L., Appelo, C.: User’s guide to PHREEQC (version 2)- a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Tech. Rep. 99-4259, USGS (1999)Google Scholar
  34. 34.
    Rubin, J.: Transport of reacting solutes in porous media: relation between mathematical nature of problem formulation and chemical nature of reactions. Water Resour. Res. 19, 1231–1252 (1983)CrossRefGoogle Scholar
  35. 35.
    Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)zbMATHGoogle Scholar
  36. 36.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Saaltink, M., Ayora, C., Carrera, J.: A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resour. Res. 34(7), 1649–1656 (1998)CrossRefGoogle Scholar
  38. 38.
    Saaltink, M., Carrera, J., Ayora, C.: A comparison of two approaches for reactive transport modelling. J. Geochem. Explor. 69–70, 97–101 (2000)CrossRefGoogle Scholar
  39. 39.
    Saaltink, M., Carrera, J., Ayora, C.: On the behavior of approaches to simulate reactive transport. J. Contam. Hydrol. 48, 213–235 (2001)CrossRefGoogle Scholar
  40. 40.
    Salignac, A.L.: Transportmulti-espèces et réactions géochimiques en aquifère : développement et validation du modèle couplé HYTEC 2D. Ph.D. thesis, École des Mines de Paris (1998)Google Scholar
  41. 41.
    Samper, J., Xu, T., Yang, C.: A sequential partly iterative approach for multicomponent reactive transport with CORE2D. Comput. Geosci. 13, 301–316 (2009). doi: 10.1007/s10596-008-9119-5 zbMATHCrossRefGoogle Scholar
  42. 42.
    Shapiro, N.Z., Shapley, L.S.: Mass action laws and the Gibbs free energy function. J. Soc. Ind. Appl. Math. 13(2), 353–375 (1965)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Siegel, P., Mosé, R., Ackerer, P., Jaffré, J.: Solution of the advection-dispersion equation using a combination of discontinuous and mixed finite elements. J. Numer. Methods Fluids 24, 595–613 (1997)zbMATHCrossRefGoogle Scholar
  44. 44.
    van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13(2), 631–644 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Xu, T., Samper, J., Ayora, C., Manzano, M., Custodio, E.: Modeling of non-isothermal multi-component reactive transport in field scale porous media flow systems. J. Hydrol. 214, 144–164 (1999)CrossRefGoogle Scholar
  46. 46.
    Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25, 93–108 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.INRIA Paris-RocquencourtLe Chesnay CedexFrance
  2. 2.ITASCA Consultants, S.A.EcullyFrance

Personalised recommendations