Computational Geosciences

, 13:409 | Cite as

A benchmark study on problems related to CO2 storage in geologic formations

Summary and discussion of the results
  • Holger ClassEmail author
  • Anozie Ebigbo
  • Rainer Helmig
  • Helge K. Dahle
  • Jan M. Nordbotten
  • Michael A. Celia
  • Pascal Audigane
  • Melanie Darcis
  • Jonathan Ennis-King
  • Yaqing Fan
  • Bernd Flemisch
  • Sarah E. Gasda
  • Min Jin
  • Stefanie Krug
  • Diane Labregere
  • Ali Naderi Beni
  • Rajesh J. Pawar
  • Adil Sbai
  • Sunil G. Thomas
  • Laurent Trenty
  • Lingli Wei
Original paper


This paper summarises the results of a benchmark study that compares a number of mathematical and numerical models applied to specific problems in the context of carbon dioxide (CO2) storage in geologic formations. The processes modelled comprise advective multi-phase flow, compositional effects due to dissolution of CO2 into the ambient brine and non-isothermal effects due to temperature gradients and the Joule–Thompson effect. The problems deal with leakage through a leaky well, methane recovery enhanced by CO2 injection and a reservoir-scale injection scenario into a heterogeneous formation. We give a description of the benchmark problems then briefly introduce the participating codes and finally present and discuss the results of the benchmark study.


Benchmark Code comparison CO2 storage 


  1. 1.
    Universität Stuttgart: Workshop on Numerical Models for CO2 Storage in Geological Formations, 2–4 April 2008. (2008)
  2. 2.
    Assteerawatt, A., Bastian, P., Bielinski, A., Breiting, T., Class, H., Ebigbo, A., Eichel, H., Freiboth, S., Helmig, R., Kopp, A., Niessner, J., Ochs, S.O., Papafotiou, A., Paul, M., Sheta, H., Werner, D., Ölmann, U.: MUFTE-UG: structure, applications and numerical methods. Newsletter, International Groundwater Modeling Centre, Colorado School of Mines 23(2) (2005)Google Scholar
  3. 3.
    Audigane, P., Gaus, I., Czernichowski, L.I., Pruess, K., Xu, T.: Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the sleipner site, North Sea. Am. J. Sci. 307(7), 974–1008 (2007)CrossRefGoogle Scholar
  4. 4.
    Audigane, P., Oldenburg, C.M., Van der Meer, B., Geel, K., Lions, J., Gaus, I., Robelin, C., Durst, P., Xu, T.: Geochemical modeling of the CO2 injection into a methane gas reservoir at the k12-b field, North Sea. In: Grobe, M., Pashin, J.C., Dodge, R.L. (eds.) AAPG Studies in Geology, Special Publication on Carbon Dioxide Sequestration in Geological Media—State of Science (2008)Google Scholar
  5. 5.
    Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., Mathiassen, O.M.: CO2 storage capacity estimation: methodology and gaps. Int. J. Greenh. Gas Control 1, 430–443 (2007)CrossRefGoogle Scholar
  6. 6.
    Balay, S., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B., Zhang, H.: Petsc Users Guide. Rep. anl-95/11, Revision 2.3.2 (2006)Google Scholar
  7. 7.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for adaptive and parallel scientific computing. Part I: abstract framework. Computing 82, 103–119 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for adaptive and parallel scientific computing. Part II: implementation and tests in DUNE. Computing 82, 103–119 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bielinski, A., Kopp, A., Schütt, H., Class, H.: Monitoring of CO2 plumes during storage in geological formations using temperature signals: numerical investigation. Int. J. Greenh. Gas Control 2, 319–328 (2008)CrossRefGoogle Scholar
  10. 10.
    Brooks, A.N., Corey, A.T.: Hydraulic properties of porous media. In: Hydrol. Pap.. Fort Collins, Colorado State University (1964)Google Scholar
  11. 11.
    Cao, H.: Development of techniques for general purpose simulators. Ph.D. thesis, Stanford University (2002)Google Scholar
  12. 12.
    Chen, Z., Ewing, R., Qin, G.: Analysis of a compositional model for fluid flow in porous media. SIAM J. Appl. Math. 60(3), 747–777 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chen, Z., Huan, G., Wang, H.: Simulation of a compositional model for multiphase flow in porous media. Numer. Methods Partial Diff. Equ. 21(4), 726–741 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Class, H., Helmig, R., Bastian, P.: Numerical simulation of nonisothermal multiphase multicomponent processes in porous media—1. An efficient solution technique. Adv. Water Resour. 25, 533–550 (2002)CrossRefGoogle Scholar
  15. 15.
    Coats, K.H., Dempsey, J.R., Henderson, J.H.: The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir performance. Soc. Pet. Eng. J. 11(1), 63–71 (1971)Google Scholar
  16. 16.
    Computer Modelling Group: GEM User Guide. (2006)
  17. 17.
    Dawson, C.: Godunov mixed methods for advection-diffusion equations in multi-dimensions. SIAM J. Numer. Anal. 30(5), 1315–1332 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dawson, C.N., Wheeler, M.F.: The Mathematics of Finite Elements and Applications, pp. 463–482. Academic, London (1987)Google Scholar
  19. 19.
    Doughty, C., Benson, S.M., Pruess, K.: Capacity investigation of brine-bearing sands for geologic sequestrations of CO2. Technical report, Berkeley (2001)Google Scholar
  20. 20.
    Ebigbo, A., Class, H., Helmig, R.: CO2 leakage through an abandoned well: problem-oriented benchmarks. Comput. Geosci. 11, 103–115 (2007)zbMATHCrossRefGoogle Scholar
  21. 21.
    Eigestad, G.T., Dahle, H.K., Hellevang, B., Johansen, W.T., Riis, F., Øian, E.: Geologic modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9138-x Google Scholar
  22. 22.
    Fan, Y.: Development of CO2 sequestration modeling capabilities in Stanford general purpose research simulator. Master’s thesis, Stanford University (2006)Google Scholar
  23. 23.
    Flemisch, B., Fritz, J., Helmig, R., Niessner, J., Wohlmuth, B.: DUMUX: a multi-scale multi-physics toolbox for flow and transport processes in porous media. In: Ibrahimbegovic, A., Dias, F. (eds.) ECCOMAS Thematic Conference on Multi-scale Computational Methods for Solids and Fluids, Cachan, 28–30 November 2007Google Scholar
  24. 24.
    Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Numerical methods for geological CO2 sequestration: vertical equilibrium with subscale analytical model. Comput. Geosci. (2009, in press)Google Scholar
  25. 25.
    Gong, B.: Effective models of fractured systems. Ph.D. thesis, Stanford University (2007)Google Scholar
  26. 26.
    Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface—A Contribution to the Modeling of Hydrosystems. Springer, New York (1997)Google Scholar
  27. 27.
    Hurter, S., Labregere, D., Berge, J.: Simulations for CO2 injection projects with compo-sitional simulator. In: Proceedings of the Offshore Europe 2007 Conference, vol. SPE 108540, 8 pp, Aberdeen, 4–7 September 2007Google Scholar
  28. 28.
    IPCC: Special report on carbon dioxide capture and storage. Technical report, Intergovernmental Panel on Climate Change (IPCC), prepared by Working Group III. Cambridge University Press, Cambridge (2005)Google Scholar
  29. 29.
    Jiang, Y.: Techniques for modeling complex reservoirs and advanced wells. Ph.D. thesis, Stanford University (2007)Google Scholar
  30. 30.
    Juanes, R., Spiteri, E.J., Orr, F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42 (2006)Google Scholar
  31. 31.
    Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libmesh: a C+ + library for parallel adaptive mesh refinement/ coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)CrossRefGoogle Scholar
  32. 32.
    Kopp, A., Class, H., Helmig, R.: Investigations on CO2 storage capacity in saline aquifers: part 1. Dimensional analysis of flow processes and reservoir characteristics. Int. J. Greenh. Gas Control (2008). doi: 10.1016/j.ijgcc.2008.10.002 Google Scholar
  33. 33.
    Kopp, A., Class, H., Helmig, R.: Investigations on CO2 storage capacity in saline aquifers, part 2: estimation of storage capacity coefficients. Int. J. Greenh. Gas Control (2008). doi: 10.1016/j.ijgcc.2008.10.001 Google Scholar
  34. 34.
    Los Alamos Grid Toolbox, LaGriT, Los Alamos National Laboratory (2008).
  35. 35.
    Lake, L.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  36. 36.
    Land, C.S.: Calculation of imbibition relative permeabilities for two- and three-phase flow from rock properties. Soc. Pet. Eng. J. 243, 149–156 (1968)Google Scholar
  37. 37.
    Le Gallo, Y., Bildstein, O., Brosse, E.: Coupled reaction-flow modeling of diagenetic changes in reservoir permeability, porosity and mineral compositions. J. Hydrol. 209(1–4), 366–388 (1998)Google Scholar
  38. 38.
    Le Gallo, Y., Trenty, L., Michel, A., Vidal-Gilbert, S., Parra, T., Jeannin, L.: Long-term flow simulation of CO2 storage in saline aquifer. In: Proceedings of GHGT-8, Trondheim, 19–23 June 2006. IEAGoogle Scholar
  39. 39.
    Nordbotten, J.M., Celia, M.A.: An improved analytical solution for interface upconing around a well. Water Resour. Res. 42, W08433 (2006). doi: 10.1029/2005WR004738 CrossRefGoogle Scholar
  40. 40.
    Nordbotten, J.M., Celia, M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Nordbotten, J.M., Celia, M.A., Bachu, S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40(4), W04204 (2004)CrossRefGoogle Scholar
  42. 42.
    Nordbotten, J.M., Celia, M.A., Bachu, S., Dahle, H.: Semi-analytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39(2), 602–611 (2005)CrossRefGoogle Scholar
  43. 43.
    Nordbotten, J.M., Kavetski, D., Celia, M.A., Bachu, S.: A semi-analytical model estimating leakage associated with CO2 storage in large-scale multi-layered geological systems with multiple leaky wells. Environ. Sci. Technol. 43(3), 743–749 (2009)CrossRefGoogle Scholar
  44. 44.
    Oldenburg, C., Stevens, S., Benson, S.: Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy 29, 1413–1422 (2004)CrossRefGoogle Scholar
  45. 45.
    Oldenburg, C.M., Benson, S.M.: CO2 injection for enhanced gas production and carbon sequestration. Technical report, Society of Petroleum Engineers (2002)Google Scholar
  46. 46.
    Oldenburg, C.M., Moridis, G.J., Spycher, N., Pruess, K.: EOS7C version 1.0: TOUGH2 module for carbon dioxide or nitrogen in natural gas (methane) reservoirs. Technical Report LBNL-56589, Lawrence Berkeley National Laboratory (2004)Google Scholar
  47. 47.
    Pawar, R.J., Zyvoloski, G.A., Temma, N., Sakamoto, Y., Komai, T.: Numerical simulation of laboratory experiment on methane hydrate dissociation. In: Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul (2005)Google Scholar
  48. 48.
    Peng, D., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. 15(1), 59–64 (1976)zbMATHGoogle Scholar
  49. 49.
    Pruess, K.: The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J. 3, 738–746 (2004)CrossRefGoogle Scholar
  50. 50.
    Pruess, K., Bielinski, A., Ennis-King, J., Fabriol, R., Le Gallo, Y., Garcia, J., Jessen, K., Kovscek, T., Law, D.H.-S., Lichtner, P., Oldenburg, C., Pawar, R., Rutqvist, J., Steefel, C., Travis, B., Tsang, C.-F., White, S., Xu, T.: Code intercomparison builds confidence in numerical models for geologic disposal of CO2. In: Gale, J., Kaya, Y., (eds.) GHGT-6 Conference Proceedings: Greenhouse Gas Control Technologies, pp. 463–470, Kyoto (2003)Google Scholar
  51. 51.
    Pruess, K., Spycher, N.: ECO2N—a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers, energy conversion and management. Energy Convers. Manag. 48(6), 1761–1767 (2007). doi: 10.1016/j.enconman.2007.01.016 CrossRefGoogle Scholar
  52. 52.
    Robinson, B.A., Viswanathan, H.S., Valocchi, A.J.: Efficient numerical techniques for modeling multi-component ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components. Adv. Water Res. 23, 307–324 (2000)CrossRefGoogle Scholar
  53. 53.
    Sarma, P.: Efficient closed-loop optimal control of petroleum reservoirs under uncertainty. Ph.D. thesis, Stanford University (2006)Google Scholar
  54. 54.
    Sbai, M.A.: A double porosity—double permeability model of the Bouillante geothermal production field (Guadeloupe). Technical Report RP-55418-FR, BRGM (2007) (in French)Google Scholar
  55. 55.
    Sbai, M.A., Azaroual, M.: A numerical model for miscible displacement of multi-component reactive species. In: Miller, C.T., Farthing, M.W., Gray, W.G., Pinder, G.F. (eds.) Computational Methods in Water Resources (CMWR XV), vol. 1(48), pp. 850–860. Elsevier, Amsterdam (2004)Google Scholar
  56. 56.
    Sbai, M.A., Azaroual, M., Menjoz, A.: Numerical solution of the mixed thermodynamics and kinetic geochemical equations in RTAFF 1—assessment of couplings between geochemistry and transport. Technical Report RP-53001-FR, BRGM (2004) (in French)Google Scholar
  57. 57.
    Schlumberger: Eclipse Technical Description 2007.1 (2007)Google Scholar
  58. 58.
    Seo, J.G., Mamora, D.D.: Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs. Energy Resour. Technol. 127 (2005)Google Scholar
  59. 59.
    Spiteri, E.J., Juanes, R., Blunt, M.J., Orr, F.M., Jr.: Relative permeability hysteresis: trapping models and application to geological CO2 sequestration. Technical report, Society of Petroleum Engineers (2005)Google Scholar
  60. 60.
    Spycher, N., Pruess, K.: CO2-H2O mixtures in the geological sequestration of CO2. ii. Partitioning in chloride brines at 12–100°C and up to 600 bar. Geochim. et Cosmochim. Acta 69(13), 3309–3320 (2005)CrossRefGoogle Scholar
  61. 61.
    Spycher, N., Pruess, K., Ennis-King, J.: CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochim. Cosmochim. Acta 67(16), 3015–3031 (2003)CrossRefGoogle Scholar
  62. 62.
    Tenma, N., Yamaguchi, T., Zyvoloski, G.: The Hijori hot dry rock test site, Japan. evaluation and optimization of heat extraction from a two-layered reservoir. Geothermics 37(1), 19–52 (2008)CrossRefGoogle Scholar
  63. 63.
    Tillier, E., Michel, A., Trenty, L.: Coupling a multiphase flow model and a reactive transport model for CO2 storage modeling. In: Comp. Meth. for Coupled Problems in Science and Engineering (2007)Google Scholar
  64. 64.
    Trenty, L., Michel, A., Tillier, E., Le Gallo, Y.: A sequential splitting strategy for CO2 storage modelling. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery, Amsterdam. EAGE (2006)Google Scholar
  65. 65.
    van der Meer, B.: Carbon dioxide storage in natural gas reservoirs. Oil Gas Sci. Technol. 60(3), 527–536 (2005)CrossRefMathSciNetGoogle Scholar
  66. 66.
    Wei, L.: Estimate CO2 storage capacity of the Johansen formation: numerical investigation beyond the benchmarking exercise. Comput. Geosci. (2009). doi: 10.1007/s10596-008-9122-x Google Scholar
  67. 67.
    Wheeler, J., Wheeler, M.F., et al.: Integrated parallel and accurate reservoir simulator. Technical report, TICAM01-25, CSM, University of Texas at Austin (2001)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Holger Class
    • 1
    Email author
  • Anozie Ebigbo
    • 1
  • Rainer Helmig
    • 1
  • Helge K. Dahle
    • 2
  • Jan M. Nordbotten
    • 2
    • 3
  • Michael A. Celia
    • 3
  • Pascal Audigane
    • 4
  • Melanie Darcis
    • 1
  • Jonathan Ennis-King
    • 5
  • Yaqing Fan
    • 6
  • Bernd Flemisch
    • 1
  • Sarah E. Gasda
    • 7
  • Min Jin
    • 8
  • Stefanie Krug
    • 9
  • Diane Labregere
    • 10
  • Ali Naderi Beni
    • 11
  • Rajesh J. Pawar
    • 12
  • Adil Sbai
    • 13
  • Sunil G. Thomas
    • 14
  • Laurent Trenty
    • 15
  • Lingli Wei
    • 16
  1. 1.Universität StuttgartStuttgartGermany
  2. 2.Dept. of MathematicsUniversity of BergenBergenNorway
  3. 3.Dept. of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA
  4. 4.BRGMFrench Geological SurveyParisFrance
  5. 5.Cooperative Research Centre for Greenhouse Gas TechnologiesCSIRO PetroleumKensingtonAustralia
  6. 6.Dept. of Energy Resources EngineeringStanford UniversityStanfordUSA
  7. 7.University of North Carolina at Chapel HillChapel HillUSA
  8. 8.Heriot-Watt UniversityEdinburghUK
  9. 9.Bundesanstalt für Geowissenschaften, und Rohstoffe (BGR)HannoverGermany
  10. 10.Schlumberger Carbon ServicesParisFrance
  11. 11.E.ON Energy Research Centre, Institute of Applied Geophysics and Geothermal EnergyRWTH Aachen UniversityAachenGermany
  12. 12.Los Alamos National LaboratoryLos AlamosUSA
  13. 13.BRGMFrench Geological SurveyOrleansFrance
  14. 14.Texas UniversityAustinUSA
  15. 15.Technology, Computer Science and Applied Mathematics DivisionIFPRueil-Malmaison CedexFrance
  16. 16.Shell International Exploration and Production BVRijswijkThe Netherlands

Personalised recommendations