Computational Geosciences

, Volume 14, Issue 1, pp 83–103 | Cite as

Computation of influence functions for automatic mining subsidence prediction

  • M. E. Díaz-Fernández
  • M. I. Álvarez-FernándezEmail author
  • A. E. Álvarez-Vigil
Original paper


This paper presents a computer tool that automatically predicts mining subsidence using the generalized n-k-g influence function detailed in (González Nicieza et al. Int J Rock Mech Min Sci 42(3):372–387, 2005). This function depends on two physical concepts: the first is gravity, which characterizes the forces acting on the ground, and the second, the convergence of the roof and floor of the mine workings due to the stress state of the ground. The developed tool also allows other influence functions to be used to predict subsidence, namely the spatial influence function (Ramírez Oyanguren et al. 2000) and the normal-type classical (Knothe, Arch Gór Hut 1, 1952) and modified (González Nicieza et al. Bull Eng Geol Environ 66(3):319–329, 2007) time functions. Moreover, the inputting and periodic updating of data from subsidence monitoring surveys is controlled by one of the tool’s modules using a method that minimizes errors resulting from time discontinuities in landmarks measurements. In addition, when actual landmarks measurements exist, the developed tool allows calibration of the subsidence parameters, minimizing the errors between actual measurements and those obtained by prediction. The tool includes a viewer, developed using OpenGL, which enables the results of the calculations carried out to be viewed, allowing the point of view to be varied. It also includes the option of viewing and saving the results of the calculations carried out over the original topographic plane defined in the AutoCAD DXF data file format. The efficacy of the tool is demonstrated via its application to a real case of mining work carried out in a village in the Principality of Asturias, Spain.


Computer tool Mining Subsidence Prediction Influence functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holla, L.: Ground movement due to longwall mining in high relief areas in New South Wales, Australia. International Journal Rock Mechanics and Mining Sciences 34(5), 775–787 (1997)CrossRefMathSciNetGoogle Scholar
  2. 2.
    González Nicieza, C., Díaz Aguado, M.B., Álvarez Fernández, M.I., Solar Menéndez, J.B.: Subsidence analysis and prediction based on a real case. 30th International Conference of Safety in Mines Research Institutes, Johannesburg (2003)Google Scholar
  3. 3.
    Li, X., Wang, S.J., Liu, T.Y., Ma, F.S.: Engineering geology, ground surface movement and fissures induced by underground mining in the Jinchuan Nickel Mine. Engineering Geology 76(1–2), 93–107 (2004)CrossRefGoogle Scholar
  4. 4.
    Deng, J., Bian, L.: Investigation and characterization of mining subsidence in Kaiyang Phosphorus Mine. J. Cent. South Univ. Technol. 14(3), 413–417 (2007)CrossRefGoogle Scholar
  5. 5.
    Baek, J., Kim, S.W., Park, H.J., Jung, H.S., Kim, K.D., Kim, J.W.: Analysis of ground subsidence in coal mining area using SAR interferometry. Geosci. J. 12(3), 277–284 (2008)CrossRefGoogle Scholar
  6. 6.
    General Institute of Mining Surveying: The movements of the rock masses and of the surface in the main coal fields from the Soviet Union. Ugletkhizdat, Moscow (1958)Google Scholar
  7. 7.
    National Coal Board: Subsidence engineer’s handbook. National Coal Board, London (1975)Google Scholar
  8. 8.
    Ou, Z., Zhu, J.: Improving the Pearson function method for the calculation of surface movement after mining a steep seam. Coal Science & Technology, Beijing (1984)Google Scholar
  9. 9.
    Rodriguez Díez, R., Toraño Alvarez, J.: Hypothesis of the multiple subsidence trough related to very steep and vertical coal seams and its prediction through profile functions. Geotech. Geolog. Eng. 18, 289–311 (2000)CrossRefGoogle Scholar
  10. 10.
    Coulthard, M.A., Dutton, A.J.: Numerical modelling of subsidence induced by underground coal mining. Key Questions in Rock Mechanics 1988. In: Proceedings of the 29th United States Rock Mechanics Symposium, pp. 529–536. Missouri (1988)Google Scholar
  11. 11.
    Yao, X.L., Reddish, D.J., Whittaker, B.N.: Non linear finite element analysis of surface subsidence arising from inclined seam extraction. International Journal of Rock Mechanics & Mining Sciences 30(45), 431–441 (1993)CrossRefGoogle Scholar
  12. 12.
    Alejano, L.R.: Hundimientos mineros: un método de predicción aplicado a capas de carbón horizontales e inclinadas y a explotaciones potásicas. Ph. D. Thesis. Escuela Técnica Superior de Ingenieros de Minas. Universidad Politécnica de Madrid (1996)Google Scholar
  13. 13.
    González Nicieza, C., Álvarez Fernández, M.I., Menéndez Díaz, A., Álvarez Vigil, A.E.: The new three-dimensional subsidence influence function denoted by n–k–g. Int. J. Rock Mech. Min. Sci. 42(3), 372–387 (2005)CrossRefGoogle Scholar
  14. 14.
    Ramírez Oyanguren, P., Rambaud Perez, C., et al.: Hundimientos mineros: Métodos de Cálculo. Instituto Tecnológico Geominero de España, Madrid (2000)Google Scholar
  15. 15.
    Beyer, F.: On predicting ground deformations due to mining flat seams. Habilitation Thesis, Tech. Univ. Berlin (1945)Google Scholar
  16. 16.
    Litwiniszyn, J.: The theories and model research of movements of ground masses. Proceedings European Congress on Ground Movement, pp 202–209. University of Leeds (1957)Google Scholar
  17. 17.
    Ehrhardt, W., Sauer, A.: Precalculation of subsidence, tilt and curvature over extractions in flat formations. Proceedings Symposium on Rock Mechanics. Kracow (1961)Google Scholar
  18. 18.
    Lin, S., Whittaker, B., Reddish, D.J.: Application of asymmetrical influence functions for subsidence prediction of gently inclined seam extractions. Int. J. Rock Mech. Min. Sci. Geomech. 29(5), 479–490 (1992)CrossRefGoogle Scholar
  19. 19.
    Sheorey, P.R., Loui, J.P., Singh, K.B., Singh, S.K.: Ground subsidence observations and a modified influence function method for complete subsidence prediction. Int. J. Rock Mech. Min. Sci. 37(5), 801–818 (2000)CrossRefGoogle Scholar
  20. 20.
    Knothe, S.: Time influence on a formation of a subsidence surface. Arch. Gór. Hut. 1 (1952)Google Scholar
  21. 21.
    Jarosz, A., Karmis, M., Sroka, A.: Subsidence development with time experiences from longwall operations. Geotech. Geolog. Eng. 8(3), 261–273 (1990)Google Scholar
  22. 22.
    Cui, X., Wang, J., Liu, Y.: Prediction of progressive surface subsidence above longwall coal mining using a time function. Int. J. Rock Mech. Min. Sci. 38, 1057–1063 (2001)CrossRefGoogle Scholar
  23. 23.
    Álvarez Fernández, M.I., González Nicieza, C., Menéndez Díaz, A., Álvarez Vigil, A.E.: Generalization of the n-k influence function to predict mining subsidence. Eng. Geol. 80, 1–36 (2005)CrossRefGoogle Scholar
  24. 24.
    González Nicieza, C., Álvarez Fernández, M.I., Menéndez Díaz, A., Álvarez Vigil, A.E.: The influence of time on subsidence in the Central Asturias Coalfield. Bull. Eng. Geol. Environ. 66(3), 319–329 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. E. Díaz-Fernández
    • 1
  • M. I. Álvarez-Fernández
    • 2
    Email author
  • A. E. Álvarez-Vigil
    • 3
  1. 1.Department of Computing, Polytechnic School of EngineeringUniversity of OviedoGijónSpain
  2. 2.Department of Mining Engineering, Mining Engineering SchoolUniversity of OviedoAsturiasSpain
  3. 3.Department of Mathematics, Mining Engineering SchoolUniversity of OviedoAsturiasSpain

Personalised recommendations