Computational Geosciences

, Volume 14, Issue 1, pp 15–30 | Cite as

Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study

Original paper

Abstract

Image analysis of three-dimensional microtomographic image data has become an integral component of pore scale investigations of multiphase flow through porous media. This study focuses on the validation of image analysis algorithms for identifying phases and estimating porosity, saturation, solid surface area, and interfacial area between fluid phases from gray-scale X-ray microtomographic image data. The data used in this study consisted of (1) a two-phase high precision bead pack from which porosity and solid surface area estimates were obtained and (2) three-phase cylindrical capillary tubes of three different radii, each containing an air–water interface, from which interfacial area was estimated. The image analysis algorithm employed here combines an anisotropic diffusion filter to remove noise from the original gray-scale image data, a k-means cluster analysis to obtain segmented data, and the construction of isosurfaces to estimate solid surface area and interfacial area. Our method was compared with laboratory measurements, as well as estimates obtained from a number of other image analysis algorithms presented in the literature. Porosity estimates for the two-phase bead pack were within 1.5% error of laboratory measurements and agreed well with estimates obtained using an indicator kriging segmentation algorithm. Additionally, our method estimated the solid surface area of the high precision beads within 10% of the laboratory measurements, whereas solid surface area estimates obtained from voxel counting and two-point correlation functions overestimated the surface area by 20–40%. Interfacial area estimates for the air–water menisci contained within the capillary tubes were obtained using our image analysis algorithm, and using other image analysis algorithms, including voxel counting, two-point correlation functions, and the porous media marching cubes. Our image analysis algorithm, and other algorithms based on marching cubes, resulted in errors ranging from 1% to 20% of the analytical interfacial area estimates, whereas voxel counting and two-point correlation functions overestimated the analytical interfacial area by 20–40%. In addition, the sensitivity of the image analysis algorithms on the resolution of the microtomographic image data was investigated, and the results indicated that there was little or no improvement in the comparison with laboratory estimates for the resolutions and conditions tested.

Keywords

Multiphase flow Porous media Computed microtomography Image analysis Marching cubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Raoush, R.I., Wilson, C.S.: Extraction of physically realistic pore network properties from three-dimensional synchrotron x-ray microtomography images of unconsolidated porous media systems. J. Hydrol. 300, 44–64 (2005). doi:10.1016/j.jconhyd.2004.12.001 CrossRefGoogle Scholar
  2. 2.
    Al-Raoush, R.I., Wilson, C.S.: A pore-scale investigation of a multiphase porous media system. J. Cont. Hydrol. 77, 67–89 (2005). doi:10.1016/j.jhydrol.2004.05.005 CrossRefGoogle Scholar
  3. 3.
    Altman, S.J., Peplinski, W.J., Rivers, M.L.: Evaluation of synchrotron x-ray computerized microtomography for the visualization of transport processes in low-porosity materials. J. Contam. Hydrol. 78, 167–183 (2005). doi:10.1016/j/jconhyd.2005.05.004 CrossRefGoogle Scholar
  4. 4.
    Arns, C., Knackstedt, M., Mecke, K.: Reconstructing complex materials via effective grain shapes. Phys. Rev. Lett. 91(21), 215506-1–215506-4 (2003)CrossRefGoogle Scholar
  5. 5.
    Betson, M., Barker, J., Barnes, P., Atkinson, T.: Use of synchrotron tomographic techniques in the assessment of diffusion parameters for solute transport in groundwater flow. Transp. Porous Media 60, 217–223 (2005). doi:10.1007/s11242-004-5737-0 CrossRefGoogle Scholar
  6. 6.
    Brusseau, M.L., Peng, S., Schnaar, G., Costanza-Robinson, M.S.: Relationship among air–water interfacial area, capillary pressure and water saturation for a sandy porous medium. Water Resour. Res. 42,W03501 (2006). doi:10.1029/2005WR004058 CrossRefGoogle Scholar
  7. 7.
    Brusseau, M.L., Peng, S., Schnaar, G., Murao, A.: Measuring air–water interfacial areas with X-ray microtomography and interfacial partitioning tracer tests. Environ. Sci. Technol. 41, 1956–1961 (2007)CrossRefGoogle Scholar
  8. 8.
    Carlson, W.D.: Three-dimensional imaging of earth and planetary materials. Earth Planet. Sci. Lett. 249, 133–147 (2006). doi:10.1016/j.epsl.2006.06.020 CrossRefGoogle Scholar
  9. 9.
    Chen, D., Pyrak-Nolte, L.J., Griffin, J., Giordano, N.J.: Measurement of interfacial are per volume for drainage and imbibition. Water Resour. Res. 43, W12504 (2007). doi:10.1029/2007WR006021 CrossRefGoogle Scholar
  10. 10.
    Cheng, J.T., Pyrak-Nolte, L.J., Nolte, D.D., Giordano, N.J.: Linking pressure and saturation through interfacial areas in porous media. Geophys. Res. Lett. 31, L08502 (2004)CrossRefGoogle Scholar
  11. 11.
    Clausnitzer, V., Hopmans, J.W.: Determination of phase-volume fractions from tomographic measurements in two-phase systems. Adv. Water Resour. 22(6), 577–584 (1999)CrossRefGoogle Scholar
  12. 12.
    Clausnitzer, V., Hopmans, J.W.: Pore-scale measurements of solute breakthrough using microfocus x-ray computed tomography. Water Resour. Res. 36(8), 2067–2079 (2000)CrossRefGoogle Scholar
  13. 13.
    Coles, M.E., Hazlett, R.D., Spanne, P., Soll, W.E., Muegge, E.L., Jones, K.W.: Pore level imaging of fluid transport using synchrotron x-ray microtomography. J. Pet. Sci. Eng. 19, 55–63 (1998)CrossRefGoogle Scholar
  14. 14.
    Costanza-Robinson, M.S., Harrold, K.H., Lieb-Lappen, R.M.: X-ray microtomography determination of air–water interfacial area-water saturation relationships in sandy porous media. Environ. Sci. Technol. 42, 2949–2956 (2008) (Accepted)CrossRefGoogle Scholar
  15. 15.
    Culligan, K.A., Wildenschild, D., Christensen, B.S., Gray, W.G., Rivers, M.L.: Pore-scale characteristics of multiphase flow in porous media: a comparison of air–water and oil–water experiments. Adv. Water Resour. 29, 227–238 (2006)CrossRefGoogle Scholar
  16. 16.
    Culligan, K.A., Wildenschild, D., Christensen, B.S., Gray, W.G., Rivers, M.L., Tompson, A.B.: Interfacial area measurements for unsaturated flow through porous media. Water Resour. Res. 40, W12413 (2004). doi:10.1029/2004WR003278 CrossRefGoogle Scholar
  17. 17.
    Dalla, E., Hilpert, M., Miller, C.T.: Computation of the interfacial area for two-fluid porous systems. J. Contam. Hydrol. 56, 25–48 (2002)CrossRefGoogle Scholar
  18. 18.
    Flin, F., Brzoska, J.B., Coeurjolly, D., Pieritz, R.A., Lesaffre, B., Coléou, C., Lamboley, P., Teytaud, O., Vignoles, G.L., Delesse, J.F.: Adaptive estimation of normals and surface area for discrete 3-D objects: application to snow binary data from X-ray tomography. IEEE Trans. Image Proc. 14(5), 585–596 (2005)CrossRefGoogle Scholar
  19. 19.
    Fredrich, J.T., DiGiovanni, A.A., Noble, D.R.: Predicting macroscopic transport properties using microscopic image data. J. Geophys. Res. 111, B03201 (2006). doi:10.1029/2005JB003774 CrossRefGoogle Scholar
  20. 20.
    Gallagher, N.C., Wise, G.L.: A theoretical analysis of the properties of median filters. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1136–1141 (1981)CrossRefGoogle Scholar
  21. 21.
    Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.: Nonlinear anisotropic filtering of mri data. IEEE Trans. Med. Imag. 11(2), 221–232 (1992)CrossRefGoogle Scholar
  22. 22.
    Hopmans, J.W., Vogel, T., Koblik, P.D.: X-ray tomography of soil water distribution in one-step outflow experiments. Soil Sci. Soc. Am. J. 56, 355–362 (1992)CrossRefGoogle Scholar
  23. 23.
    Kaestner, A., Lehmann, E., Stampanoni, M.: Imaging and image processing in porous media research. Adv. Water Resour. 31, 1174–1187 (2008). doi:10.1016/j.advwatres.2008.01.022 CrossRefGoogle Scholar
  24. 24.
    Ketcham, R.A.: BLOB3D User’s Guide (2004). ftp://ctlab.geo.utexas.edu/Blob3D/
  25. 25.
    Ketcham, R.A., Iturrino, G.J.: Nondestructive high-resolution visualization and measurement of anisotropic effective porosity in complex lithologies using high-resolution x-ray computed tomography. J. Hydrol. 302, 92–106 (2005). doi:10.1016/j.jhydrol.2004.06.037 CrossRefGoogle Scholar
  26. 26.
    Kim, H., Rao, P.S.C., Annable, M.D.: Consistency of the interfacial tracer technique: experimental evaluation. J. Contam. Hydrol. 40, 79–94 (1999)CrossRefGoogle Scholar
  27. 27.
    Lindquist, W.: 3DMA General Users Manual (1999). Stony Brook AMS Preprints. http://www.ams.sunysb.edu/papers/papers99.html
  28. 28.
    Lindquist, W., Venkatarangan, A.: Investigating 3d geometry of porous median from high resolution images. Phys. Chem. Earth (A) 25(7), 593–599 (1999)CrossRefGoogle Scholar
  29. 29.
    Lindquist, W.B., Lee, S.M., Coker, D.A., Jones, K.W., Spanne, P.: Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res. 101(B4), 8297–8310 (1996)CrossRefGoogle Scholar
  30. 30.
    McClure, J., Adalsteinsson, D., Pan, C., Gray, W., Miller, C.: Approximation of interfacial properties in multiphase porous media systems. Adv. Water Resour. 30(1), 354–365 (2007)CrossRefGoogle Scholar
  31. 31.
    Montemagno, C.D., Ma, Y.: Measurement of interfacial surface areas for two-phase flow in porous media from pvi data. In: van Genuchten, M.T., Leije, F., Wu, L. (eds.) Characterization and Measurements of Hydraulic Properties of Unsaturated Porous Media, pp. 121–132. University of California Press, Riverside (1999)Google Scholar
  32. 32.
    Oh, W., Lindquist, B.: Image thresholding by indicator kriging. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 590–602 (1999)CrossRefGoogle Scholar
  33. 33.
    Øren, P., Bakke, S.: Reconstruction of berea sandstone and pore-scale modeling of wettability effects. J. Pet. Sci. Eng. 39, 177–199 (2003). doi:10.1016/S0920-4105(03)00062-7 CrossRefGoogle Scholar
  34. 34.
    Pal, N.R.: On minimum cross-entropy thresholding. Pattern Recogn. 29(4), 575–580 (1996)CrossRefGoogle Scholar
  35. 35.
    Pappas, T.N.: An adaptive clustering algorithm for image segmentation. IEEE Trans. Signal Process. 40(4), 901–914 (1992)CrossRefGoogle Scholar
  36. 36.
    Patzek, T.W.: Verification of a complete pore network simulator of drainage and imbibition. SPE J. 6, 144–156 (2001)Google Scholar
  37. 37.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intel. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  38. 38.
    Petitot, J.: An introduction to the Mumford-Shah segmentation model. J. Physiol. Paris 97, 335–342 (2003). doi:10.1016/j.jphysparis.2003.09.007 CrossRefGoogle Scholar
  39. 39.
    Prodonavić, M., Lindquist, W.B., Seright, R.: Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomography imaging. J. Colloid Interface Sci. 298, 282–297 (2006). doi:10.1016/j.jcis.2005.11.053 CrossRefGoogle Scholar
  40. 40.
    Prodonavić, M., Lindquist, W.B., Seright, R.: 3d image-based characterization of fluid displacement in berea core. Adv. Water Resour. 30, 214–226 (2007). doi:10.1016/j.advwatres.2005.05.015 CrossRefGoogle Scholar
  41. 41.
    Rivers, M.L.: GSECARS Tomography Processing Software (2001). http://cars9.uchicago.edu/software/idl/tomography.html
  42. 42.
    Schaap, M.G., Lebron, I.: Using microscope observations of thin sections to estimate soil permeability with the Kozeny–Carman equation. J. Contam. Hydrol. 251, 186–201 (2001)Google Scholar
  43. 43.
    Scheckel, K.G., Hamon, R., Jassogne, L., Rivers, M., Lombi, E.: Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. Plant Soil 290(1–2), 51–60 (2007). doi:10.1007/s11104-006-9102-7 CrossRefGoogle Scholar
  44. 44.
    Schnaar, G., Brusseau, M.L.: Pore-scale characterization of organic immiscible-liquid morphology in natural porous media using synchrotron X-ray microtomography. Environ. Sci. Technol. 39, 8403–8410 (2005)CrossRefGoogle Scholar
  45. 45.
    Schnaar, G., Brusseau, M.L.: Characterizing pore-scale configuration of organic immiscible liquid in multi-phase systems using synchrotron X-ray microtomography. Vadose Zone J. 5, 641–648 (2006)CrossRefGoogle Scholar
  46. 46.
    Sezgin, M., Sankur, B.: Selection of thresholding methods for non-destructive testing applications. In: Image Processing, 2001. Proceedings. 2001 International Conference on, vol. 3, pp. 764–767 (2001). doi:10.1109/ICIP.2001.958231
  47. 47.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  48. 48.
    Sheppard, A.P., Sok, R.M., Averdunk, H.: Techniques for image enhancement and segmentation of tomographic images of porous materials. Phys. A 339, 145–151 (2004). doi:10.1016/j.physa.2004.03.057 CrossRefGoogle Scholar
  49. 49.
    Silin, D., Patzek, T.: Pore space morphology analysis using maximal inscribed spheres. Phys. A 371, 336–360 (2006). doi:10.1016/j.physa.2006.04.048 CrossRefGoogle Scholar
  50. 50.
    Song, S.R., Jones, K.W., Lindquist, W.B., Dowd, B.A., Sahagian, D.L.: Synchrotron X-ray computed microtomography studies of vesiculated basaltic rocks. Bull. Volcanol. 63, 252–263 (2001)CrossRefGoogle Scholar
  51. 51.
    Thieme, J., Schneider, G., Knöchel, C.: X-ray tomography of a microhabitat of bacteria and other soil colloids with sub-100 nm resolution. Micron 34, 339–344 (2003). doi:10.1016/S0968-4328(03)000061-1 CrossRefGoogle Scholar
  52. 52.
    Torquato, S.: Random Heterogeneous Materials Microstructure and Microscopic Properties. Springer, New York (2002)Google Scholar
  53. 53.
    Turner, M., Knüfing, L., Arns, C., Sakellariou, A., Senden, T., Sheppard, A., Sok, R., Limaye, A., Pinczewski, W., Knackstedt, M.: Three-dimensional imaging of multiphase flow in porous media. Phys. A 339, 166–172 (2004). doi:10.1016/j.physa.2004.03.059 CrossRefGoogle Scholar
  54. 54.
    Wildenschild, D., Hopmans, J.W., Rivers, M.L., Kent, A.J.: Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 4, 112–126 (2005)CrossRefGoogle Scholar
  55. 55.
    Wildenschild, D., Hopmans, J.W., Vaz, C., Rivers, M.L., Rikard, D., Christensen, B.S.: Using X-ray computed microtomography in hydrology: systems, resolution and limitations. J. Hydrol. 267, 285–297 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Chemical, Biological and Environmental Engineering (CBEE)Oregon State UniversityCorvallisUSA

Personalised recommendations