Computational Geosciences

, 13:255 | Cite as

An image analysis method to determine crystal size distributions of olivine in kimberlite

  • E. J. Holden
  • S. Moss
  • J. K. Russell
  • M. C. Dentith
Original paper


Crystal size distributions (CSDs) are a standard method of describing populations of crystals within magmatic rocks. Olivine is the dominant phase in kimberlite (∼40–50% by volume) and features a diverse range of sizes, shapes and origins. CSDs of olivine provide a logical means of semi-quantitatively characterising kimberlite. The CSDs can then be used to distinguish or correlate between kimberlite bodies or to investigate processes related to ascent, emplacement and eruption. In this paper, we present an automatic image analysis technique that provides efficient quantification of olivine CSDs within digital images of polished slabs of kimberlite. This technique relies on a combination of algorithms for detecting regions of interest (ROI) and for segmentation of ROIs in order to identify individual olivine crystals that are used for size distribution datasets. The detection process identifies regions expected to be olivine using a model-based colour detection technique using Mahalanobis distance combined with texture analysis based on local standard deviation and greyscale foreground enhancement techniques. The segmentation process separates adjacent domains to identify individual crystals using an iterative marker-based watershed algorithm to separate adjoined structures of varying sizes. We demonstrate the utility of automatic image analysis by comparing CSDs for olivine derived from this method versus results from manual digitisation of olivine grains. The automatic detection system correctly identified ∼86% of the manually detected olivine domains; ∼88% of the automatically detected regions correctly correlate to manually defined olivine grains. Discrepancies between the two methods are mostly the result of oversimplification of crystal margins (i.e. rounding) by manual tracing whereas automatic boundary recognition shows clear advantages in identifying irregularities in crystal edges. Closer examination of the results shows that both methods suffer from under-representation of smaller crystals due to: (1) human subjectivity and error in manual tracing and (2) noise removal processes in automatic detection. Automatic detection of olivine grains is much more efficient than conventional manual tracing; manual detection requires ∼6 h per sample versus ∼1 min for automatic analysis of the same sample.


Image analysis Feature extraction Mineral grain detection Crystal size distribution Olivine size distribution 


  1. 1.
    Allen, S.R., McPhie, J.: Phenocryst fragments in rhyolitic lavas and lava domes. J. Volcanol. Geotherm. Res. 126, 263–283 (2003). doi:10.1016/S0377-0273(03)00151-3 CrossRefGoogle Scholar
  2. 2.
    Armienti, P., Pareschi, M.T., Innocenti, F., Pompilio, M.: Effects of magma storage and ascent on the kinetics of crystal growth. Contrib. Mineral. Petrol. 115, 402–414 (1994). doi:10.1007/BF00320974 CrossRefGoogle Scholar
  3. 3.
    Back, T., Fogel, D.B., Michalewicz, Z.: Handbook on Evolutionary Computation. CRC, Boca Raton, FL (1997)CrossRefGoogle Scholar
  4. 4.
    Bindeman, I.N.: Crystal sizes in evolving silicic magma chambers. Geology 31, 367–370 (2003). doi:10.1130/0091-7613(2003)031<0367:CSIESM>2.0.CO;2 CrossRefGoogle Scholar
  5. 5.
    Bindeman, I.N.: Fragmentation phenomena in populations of magmatic crystals. Am. Mineral. 90, 1801–1815 (2005). doi:10.2138/am.2005.1645 CrossRefGoogle Scholar
  6. 6.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  7. 7.
    Cashman, K.V.: Textural constraints on the kinetics of crystallization of igneous rocks. In: Ribbe, P.E. (ed.) Modern Methods of Igneous Petrology, pp. 259–314. Geological Society of America, Washington, DC (1990)Google Scholar
  8. 8.
    Cashman, K.V., Marsh, B.D.: Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II, Makaopuhi lava lake. Contrib. Mineral. Petrol. 99, 401–405 (1988). doi:10.1007/BF00371933 CrossRefGoogle Scholar
  9. 9.
    Clement, C.R.: A comparative geological study of some major kimberlite pipes in the Northern Cape and Orange Free State. Ph.D. thesis, University of Cape Town, Cape Town, South Africa (1982)Google Scholar
  10. 10.
    Farfan, C., Salinas, R.A., Cifuentes, G.: Estimation of the size distribution of particles moving on a conveyor belt. Miner. Eng. 20(1), 72–83 (2007). doi:10.1016/j.mineng.2006.05.011 CrossRefGoogle Scholar
  11. 11.
    Graham, I., Burgess, J.L., Bryan, D., Ravenscroft, P.J., Thomas, E., Doyle, B.J., Hopkins, R., Armstrong, K.A.: Exploration history and geology of the Diavik Kimberlites, Lac de Gras, Northwest Territories, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (eds.) Proceedings of the VIIth International Kimberlite Conference, pp. 262–279. Red Roof Design, Cape Town, South Africa (1998)Google Scholar
  12. 12.
    Higgins, M.D.: Measurement of crystal size distributions. Am. Mineral. 85, 1105–1116 (2000)Google Scholar
  13. 13.
    Horn, B.K.P: Robot Vision. The MIT Press, McGraw-Hill Book Company (1993)Google Scholar
  14. 14.
    Launeau, P., Cruden, A., Bouchez, J.: Mineral recognition in digital images of rocks: a new approach using multichannel classification. Can. Mineral. 32, 919–933 (1994)Google Scholar
  15. 15.
    Manly, B.F.J.: Multivariate Statistical Methods: A Primer. Chapman and Hall, London (1986)Google Scholar
  16. 16.
    Mangan, M.T.: Crystal size distribution systematics and the determination of magma storage times: the 1959 eruption of Kilauea volcano, Hawaii. J. Volcanol. Geotherm. Res. 44(3–4), 295–302 (1990). doi:10.1016/0377-0273(90)90023-9 CrossRefGoogle Scholar
  17. 17.
    Marschallinger, R.: Automatic mineral classification in the macroscopic scale. Comput. Geosci. 23(1), 119–126 (1997) doi:10.1016/S0098-3004(96)00074-X CrossRefGoogle Scholar
  18. 18.
    Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1, 21–45 (1990). doi:10.1016/1047-3203(90)90014-M CrossRefGoogle Scholar
  19. 19.
    Mitchell, R.H.: Kimberlites: Mineralogy, Geochemistry and Petrology, 442 pp. Plenum, New York (1986)Google Scholar
  20. 20.
    Mitchell, R.H.: Kimberlites, Orangeites and Related Rocks. Plenum, New York (1995)Google Scholar
  21. 21.
    Moss, S., Russell, J.K., Andrews, G.D.M.: Progressive infilling of a kimberlite pipe at Diavik, Northwest Territories, Canada: insights from volcanic facies architecture, textures, and granulometry. J. Volcanol. Geotherm. Res. 174, 103–116 (2008). doi:10.1016/j.jvolgeores.2007.12.020 CrossRefGoogle Scholar
  22. 22.
    Obara, B., Kozusnikova, A.: Utilisation of the image analysis method for the detection of the morphological anisotropy of calcite grains in marble. Comput. Geosci. 11, 275–281 (2007). doi:10.1007/s10596-007-9051-0 zbMATHCrossRefGoogle Scholar
  23. 23.
    Peterson, T.D.: Petrology and genesis of natrocarbonatite. Contrib. Mineral. Petrol. 105, 143–155 (1990). doi:10.1007/BF00678981 CrossRefGoogle Scholar
  24. 24.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inform. 41, 187–228 (2001)MathSciNetGoogle Scholar
  25. 25.
    Ross, B.J., Fueten, F., Yashkir, D.Y.: Automatic mineral identification using genetic algorithm. Mach. Vis. Appl. 13(2), 61–69 (2001). doi:10.1007/PL00013273 CrossRefGoogle Scholar
  26. 26.
    Smith, J.V., Beermann, E.: Image analysis of plagioclase crystals in rock thin sections using grey level homogeneity recognition of discrete areas. Comput. Geosci. 33, 335–356 (2007). doi:10.1016/j.cageo.2005.11.010 CrossRefGoogle Scholar
  27. 27.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993) doi:10.1109/83.217222 CrossRefGoogle Scholar
  28. 28.
    Walters, A.L., Phillips, J.C., Brown, R.J., Field, M., Gernon, T., Stripp, G., Sparks, R.S.J.: The role of fluidisation in the formation of volcaniclastic kimberlite: grain size observations and experimental investigation. J. Volcanol. Geotherm. Res. 155(1–2), 119–137 (2006). doi:10.1016/j.jvolgeores.2006.02.005 CrossRefGoogle Scholar
  29. 29.
    Zhou, Y., Starkey, J., Mansinha, L.: Identification of mineral grains in a petrographic thin section using phi- and max-images. Math. Geol. 36(7), 781–801 (2004). doi:10.1023/B:MATG.0000041179.79093.87 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E. J. Holden
    • 1
  • S. Moss
    • 2
  • J. K. Russell
    • 2
  • M. C. Dentith
    • 1
  1. 1.Centre for Exploration Targeting, School of Earth and Geographical SciencesThe University of Western AustraliaCrawleyAustralia
  2. 2.Volcanology and Petrology Laboratory, Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations