Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Accurate local upscaling with variable compact multipoint transmissibility calculations

Abstract

We propose a new single-phase local upscaling method that uses spatially varying multipoint transmissibility calculations. The method is demonstrated on two-dimensional Cartesian and adaptive Cartesian grids. For each cell face in the coarse upscaled grid, we create a local fine grid region surrounding the face on which we solve two generic local flow problems. The multipoint stencils used to calculate the fluxes across coarse grid cell faces involve the six neighboring pressure values. They are required to honor the two generic flow problems. The remaining degrees of freedom are used to maximize compactness and to ensure that the flux approximation is as close as possible to being two-point. The resulting multipoint flux approximations are spatially varying (a subset of the six neighbors is adaptively chosen) and reduce to two-point expressions in cases without full-tensor anisotropy. Numerical tests show that the method significantly improves upscaling accuracy as compared to commonly used local methods and also compares favorably with a local–global upscaling method.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2(3), 421–439 (2004)

  2. 2.

    Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publisher, Essex (1979)

  3. 3.

    Aavatsmark, I., Barkve, T., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127, 2–14 (1996)

  4. 4.

    Arbogast, T.: An overview of subgrid upscaling for elliptic problems in mixed form. In: Chen, Z., Glowinski, R., Li, K. (eds.) Current Trends in Scientific Computing. Contemporary Mathematics, pp. 21–32. AMS, Providence (2003)

  5. 5.

    Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

  6. 6.

    Berger, M.J., Oliger, J.E.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

  7. 7.

    Bourgeat, A.: Homogenized behavior of two-phase flows in naturally fractured reservoirs with uniform fractures distribution. Comput. Methods Appl. Mech. Eng. 47, 205–16 (1984)

  8. 8.

    Caers, J.: Petroleum Geostatistics. SPE, Richardson 2005

  9. 9.

    Chen, Y., Durlofsky. L.J., Gerritsen, M.G., Wen, X.H.: A coupled local–global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)

  10. 10.

    Chen, Y., Mallison, B.M., Durlofsky, L.J.: Nonlinear two-point flux approximation for modeling full-tensor effects in subsurface flow simulations. Comput. Geosci. (2008). doi:10.1007/s10596-007-9067-5

  11. 11.

    Chen, Y., Durlofsky, L.J.: Adaptive local–global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media 62, 157–185 (2006)

  12. 12.

    Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72(242), 541–576 (2003)

  13. 13.

    Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Evalu. Eng. 4, 308–17 (2001)

  14. 14.

    Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27, 699–708 (1991)

  15. 15.

    Durlofsky, L.J., Efendiev, Y., Ginting, V.: An adaptive local–global multiscale finite volume element method for two-phase flow simulations. Adv. Water Res. 30, 576–588 (2006)

  16. 16.

    Edwards, M.G.: Elimination of adaptive grid interface errors in the discrete cell centered pressure equation. J. Comput. Phys. 126, 356–372 (1996)

  17. 17.

    Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2, 259–290 (1998)

  18. 18.

    Gautier, Y., Blunt, M.J., Christie, M.A.: Nested gridding and streamline-based simulation for fast reservoir performance prediction. In: SPE Reservoir Simulation Symposium, SPE51931. Houston, TX, 14–17 February 1999

  19. 19.

    Gerritsen, M.G., Jessen, K,. Mallison, B.T., Lambers, J.V.: A fully adaptive streamline framework for the challenging simulation of gas-injection processes. In: SPE ATCE, SPE 97270. Dallas, TX, 9–12 October 2005

  20. 20.

    Gerritsen, M.G., Lambers, J.V.: Integration of local–global upscaling and grid adaptivity for simulation of subsurface flow in heterogeneous formations. Comput. Geosci. (2008). doi:10.1007/s10596-007-9078-2

  21. 21.

    Gerritsen, M.G., Lambers, J.V., Mallison, B.T.: A variable and compact MPFA for transmissibility upscaling with guaranteed monotonicity. In: Proceedings of the 10th European Conference on the Mathematics of Oil Recovery. Amsterdam, 4–7 September 2006

  22. 22.

    Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, London (1981)

  23. 23.

    Ham, F.E., Lien, F.S., Strong, A.B.: A Cartesian grid method with transient anisotropic adaptation. J. Comput. Phys. 179, 469–494 (2002)

  24. 24.

    He, C.: Structured flow-based gridding and upscaling for reservoir simulation. Ph.D. thesis, Department of Petroleum Engineering, Stanford University (2004)

  25. 25.

    Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–77 (2002)

  26. 26.

    Holden, L., Nielsen, B.F.: Global upscaling of permeability in heterogeneous reservoirs: the output least squares (OTL) method. Transp. Porous Media 40, 115–43 (2000)

  27. 27.

    Hornung, R., Trangenstein, J.: Adaptive mesh refinement and multilevel iteration for flow in porous media. J. Comput. Phys. 136, 522–545 (1997)

  28. 28.

    Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

  29. 29.

    Jenny, P., Lee, S.H., Tchelepi, H.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187(1), 47–67 (2003)

  30. 30.

    Kippe, V., Aarnes, J.E., Lie, K.-A.: A comparison of multiscale methods for elliptic problems in porous media flow. Comput. Geosci. (2008). doi:10.1007/s10596-007-9074-6

  31. 31.

    Lee, S.H., Tchelepi, H.A., Jenny, P., DeChant. L.J.: Implementation of a flux-continuous finite-difference method for stratigraphic, hexahedron grids. SPE J. 7, 267–277 (2002)

  32. 32.

    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–61 (2005)

  33. 33.

    Nilsson, J., Gerritsen, M.G., Younis, R.M.: A novel adaptive anisotropic grid framework for efficient reservoir simulation. In: Proceedings of the SPE Reservoir Simulation Symposium, SPE 93243, Houston, TX, 31 January–2 February 2005

  34. 34.

    Nordbotten, J.M., Aavatsmark, I., Eigestad, G.T.: Monoton icity of control volume methods. Numer. Math. 106, 255–288 (2006)

  35. 35.

    Pickup, G.E., Ringrose, P.S., Jensen, J.L., Sorbie, K.S.: Permeability tensors for sedimentary structures. Math. Geol. 26, 227–250 (1994)

  36. 36.

    Pollock, D.: Semianalytical computation of path lines for finite difference models. Ground Water 26, 743–750 (1988)

  37. 37.

    Sammon, P.H.: Dynamic grid refinement and amalgamation for compositional simulation. In: SPE RSS, SPE 79683. SPE, Richardson (2003)

  38. 38.

    Trangenstein, J., Bi, Z.: Large multi-scale iterative techniques and adaptive mesh refinement for miscible displacement simulation. In: SPE/DOE Improved Oil Recovery Symposium, SPE75232. Tulsa, OK, 13–17 April 2002

  39. 39.

    Watson, D.F.: Contouring: a guide to the analysis and display of spacial data. Pergamon, Oxford (1994)

  40. 40.

    Wen, X.H., Durlofsky, L.J., Edwards, M.G.: Use of border regions for improved permeability upscaling. Math. Geol. 35, 521–547 (2003)

  41. 41.

    Younis, R.M., Caers, J.: A method for static-based upgridding. In: Proceedings of the 8th European Conference on the Mathematics of Oil Recovery. Freiberg, 3–6 September 2002

Download references

Author information

Correspondence to James V. Lambers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lambers, J.V., Gerritsen, M.G. & Mallison, B.T. Accurate local upscaling with variable compact multipoint transmissibility calculations. Comput Geosci 12, 399–416 (2008). https://doi.org/10.1007/s10596-007-9068-4

Download citation

Keywords

  • Scale up
  • Subsurface
  • Heterogeneity
  • Flow simulation
  • Channelized
  • Permeability
  • Transmissibility
  • Multiscale
  • Adaptivity