Advertisement

Computational Geosciences

, Volume 12, Issue 3, pp 367–376 | Cite as

On the relationship between the multiscale finite-volume method and domain decomposition preconditioners

  • J. M. NordbottenEmail author
  • P. E. Bjørstad
Original paper

Abstract

In this paper, we review the classical nonoverlapping domain decomposition (NODD) preconditioners, together with the newly developed multiscale control volume (MSCV) method. By comparing the formulations, we observe that the MSCV method is a special case of a NODD preconditioner. We go on to suggest how the more general framework of NODD can be applied in the multiscale context to obtain improved multiscale estimates.

Keywords

Nonoverlapping domain decomposition Multiscale control volume method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarnes, J.E., Kippe, V., Lie, K.A.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water Resour. 28(3), 257–271 (2005)CrossRefGoogle Scholar
  2. 2.
    Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6, 405–432 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arbogast, T.: Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal. 42(2), 576–598 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barrett, R. et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM (1994)Google Scholar
  5. 5.
    Bjørstad, P.E., Widlund, O.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23(6), 1093–1120 (1986)CrossRefGoogle Scholar
  6. 6.
    Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring I. Math. Comput. J. Numer. Anal. 47, 103–134 (1986)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Cai, X.C., Gropp, W.D., Keyes, D.E.: A comparison of some domain decomposition algorithms for nonsymmeric elliptic problems. In: Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 224–235 (1992)Google Scholar
  8. 8.
    Chan, T.F., Keyes, D.E.: Interface preconditioning for domain-decomposed convection-diffusion operators. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 245–262 (1990)Google Scholar
  9. 9.
    Chen, Y., Durlofsky, L.J., Gerritsen, M., Wen, X.H.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26(10), 1041–1060 (2003)CrossRefGoogle Scholar
  10. 10.
    Efendiev, Y.R., Durlofsky, L.J.: Accurate subgrid models for two-phase flow in heterogeneous reservoirs. SPE J. 9(2), 219–226 (2004)Google Scholar
  11. 11.
    Espedal, M.S., Ewing, R.E.: Characteristic Petrov-Galerkin subdomain methods for 2-phase immiscible flow. Comput. Methods Appl. Mech. Eng. 64(1–3), 113–135 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jenny, P., Lee, S.H., Tchelepi, H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187(1), 47–67 (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Model. Simul. 3(1), 50–64 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Smith, B.F.: An optimal domain decomposition preconditioner for the finite element solution of linear elasticity problems. SIAM J. Sci. Stat. Comput. 13(1), 364–378 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  16. 16.
    Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory. Springer Ser. Comput. Math. 34 (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations