Advertisement

Computational Geosciences

, Volume 11, Issue 2, pp 145–158 | Cite as

A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case

  • Phillip Joseph Phillips
  • Mary F. WheelerEmail author
Origina Paper

Abstract

In this paper, we formulate a finite element procedure for approximating the coupled fluid and mechanics in Biot’s consolidation model of poroelasticity. Here, we approximate the pressure by a mixed finite element method and the displacements by a Galerkin method. Theoretical convergence error estimates are derived in a discrete-in-time setting. Of particular interest is the case when the lowest-order Raviart–Thomas approximating space or cell-centered finite differences are used in the mixed formulation and continuous piecewise linear approximations are used for displacements. This approach appears to be the one most frequently applied to existing reservoir engineering simulators.

Keywords

Continuous Galerkin Discrete-in-time a priori error estimates Mixed finite elements Poroelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—A general purpose object oriented finite element library. Report ISC-06-02-MATH, Institute for Scientific Computation, Texas A&M University, College Station (2006)Google Scholar
  2. 2.
    Barry, S., Mercer, G.: Exact solutions for two-dimensional time dependent flow and deformation within a poroelastic medium. J. Appl. Mech. 66, 536–540 (1999)MathSciNetGoogle Scholar
  3. 3.
    Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 2, 155–164 (1941)CrossRefGoogle Scholar
  4. 4.
    Biot, M.: Theory of elasticity and consolidation for a porous anisotropic media. J. Appl. Phys. 26(2), 182–185 (1955)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin Heidelberg New York (1994)zbMATHGoogle Scholar
  6. 6.
    Coussy, O.: Poromechanics. Wiley, New York (2004)Google Scholar
  7. 7.
    Gautschi, W.: Numerical Analysis: An Introduction. Birkhäuser, Boston (1997)zbMATHGoogle Scholar
  8. 8.
    Lipnikov, K.: Numerical methods for the Biot model in poroelasticity. Ph.D. thesis, University of Houston (2002)Google Scholar
  9. 9.
    Murad, M., Loula, A.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95, 359–382 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Nedelec, J.: Mixed finite elements in \({\mathbb R3}\). Numer. Math. 35, 315–341 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Phillips, P.J.,Wheeler,M.F.: A coupling of mixed and continuous Galerkin finite elements for poroelasticity I: the continuous in time case. Comput. Geosci. doi:10.1007/s10596-007-9045-y (2007)
  12. 12.
    Raviart, R., Thomas, J.: Mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin Heidelberg New York (1977)CrossRefGoogle Scholar
  13. 13.
    Rivière, B., Wheeler, M.: Discontinuous Galerkin method applied to non- linear parabolic problems. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes in Computational Science and Engineering Edition, vol. 11. Springer, Berlin Heidelberg New York (1999)Google Scholar
  14. 14.
    Rivière, B., Wheeler, M.: Optimal error estimates applied to linear elasticity. Technical Report, ICES Report. ICES, Austin (2000)Google Scholar
  15. 15.
    Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251, 310–340 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Terzaghi, K.: Die Berechnung der Durchlassigkeits-ziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzung Berichte. Akadamie der Wissenschaften, Wien Mathematisch-Naturwissenschaftliche Klasse, Abteilung IIa. 132, 105–124 (1923)Google Scholar
  17. 17.
    Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)Google Scholar
  18. 18.
    Wheeler, M.F.: A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Center for Subsurface Modeling (CSM), Institute for Computational Engineering and Sciences (ICES)University of Texas at AustinAustinUSA
  2. 2.CSM, ICES, Department of Aerospace Engineering and Engineering Mechanics, Department of Petroleum Engineering and Geosystems EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations