Computational Geosciences

, Volume 11, Issue 2, pp 103–115 | Cite as

CO2 leakage through an abandoned well: problem-oriented benchmarks

Original Paper

Abstract

The efficiency and sustainability of carbon dioxide (CO2) storage in deep geological formations crucially depends on the integrity of the overlying cap-rocks. Existing oil and gas wells, which penetrate the formations, are potential leakage pathways. This problem has been discussed in the literature, and a number of investigations using semi-analytical mathematical approaches have been carried out by other authors to quantify leakage rates. The semi-analytical results are based on a number of simplifying assumptions. Thus, it is of great interest to assess the influence of these assumptions. We use a numerical model to compare the results with those of the semi-analytical model. Then we ease the simplifying restrictions and include more complex thermodynamic processes including sub- and supercritical fluid properties of CO2 and non-isothermal as well as compositional effects. The aim is to set up problem-oriented benchmark examples that allow a comparison of different modeling approaches to the problem of CO2 leakage.

Keywords

benchmarks CO2 sequestration non-isothermal effects numerical modeling semi-analytical solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assteerawatt, A., Bastian, P., Bielinski, A., Breiting, T., Class, H., Ebigbo, A., Eichel, H., Freiboth, S., Helmig, R., Kopp, A., Niessner, J., Ochs, S.O., Papafotiou, A., Paul, M., Sheta, H., Werner, D., Ölmann, U.: MUFTE-UG: structure, applications and numerical methods. Newsletter, International Groundwater Modeling Centre, Colorado School of Mines 23(2), (10/2005)Google Scholar
  2. 2.
    Bastian, P., Helmig, R.: Efficient fully-coupled solution techniques for two phase flow in porous media. Parallel multigrid solution and large scale computations. Adv. Water Resour. 23, 199–216 (1999)CrossRefGoogle Scholar
  3. 3.
    Batzle, M., Wang, Z.: Seismic properties of pore fluids. Geophysics 57, 1396–1408 (1992)CrossRefGoogle Scholar
  4. 4.
    Bielinski, A.: Numerical simulation of CO2 sequestration in geological formations. PhD thesis, Universität Stuttgart (2006)Google Scholar
  5. 5.
    Brooks, A.N., Corey, A.T.: Hydraulic properties of porous media. In: Hydrol. Pap. Fort Collins, Colorado State University (1964)Google Scholar
  6. 6.
    Class, H., Helmig, R., Bastian, P.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. – 1. An efficient solution technique. Adv. Water Resour. 25, 533–550 (2002)CrossRefGoogle Scholar
  7. 7.
    Class, H., Helmig, R., Niessner, J., Ölmann, U.: Multiphase Processes in Porous Media, Multifield Problems in Solid and Fluid Mechanics, 28th edition, pp. 45–82. Springer, Berlin Heidelberg New York (2006)Google Scholar
  8. 8.
    Daubert, T.E., Danner, R.P.: Physical and thermodynamic properties of pure chemicals: data compilation. Design Institute for Physical Property Data (1989)Google Scholar
  9. 9.
    Duan, Z., Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)CrossRefGoogle Scholar
  10. 10.
    Fenghour, A., Wakeham, W., Vesovic, V.: The viscosity of carbon dioxide. J. Phys. Chem. Ref. Data 27(1), 31–44 (1998)CrossRefGoogle Scholar
  11. 11.
    Garcia, J.: Density of aqueous solutions of CO2. Technical report, LBNL Report 49023, Lawrence Berkeley National Laboratory, Berkeley, CA, USA (2001)Google Scholar
  12. 12.
    Gasda, S., Bachu, S., Celia, M.: Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ. Geol. 46, 707–720 (2004)CrossRefGoogle Scholar
  13. 13.
    Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin Heidelberg New York (1997)Google Scholar
  14. 14.
    Helmig, R., Class, H., Huber, R., Sheta, H., Ewing, R., Hinkelmann, R., Jakobs, H., Bastian, P.: Architecture of the modular program system MUFTE-UG for simulating multiphase flow and transport processes in heterogeneous porous media. Math. Geol. 2, 123–131 (1998)Google Scholar
  15. 15.
    Holloway, S.: Storage of fossil fuels-derived carbon dioxide beneath the surface of the earth. Ann. Rev. Energy Environ. 26, 145–166 (2001)CrossRefGoogle Scholar
  16. 16.
    Huber, R., Helmig, R.: Node-centered finite-volume discretization for the numerical simulation of multiphase flow in heterogeneous porous media. Comput. Geosci. 4, 141–164 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    IAPWS: Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. The International Association for the Properties of Water and Steam (1997) http://www.iapws.org/.
  18. 18.
    Michaelides, E.: Thermodynamic properties of geothermal fluids. Geotherm. Resour. Counc. Trans. 5, 361–364 (1981)Google Scholar
  19. 19.
    Nordbotten, J., Celia, M., Bachu, S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40(4), W04204 (2004)CrossRefGoogle Scholar
  20. 20.
    Nordbotten, J., Celia, M., Bachu, S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58(3), 339–360 (2005a)CrossRefGoogle Scholar
  21. 21.
    Nordbotten, J., Celia, M., Bachu, S., Dahle, H.: Semi-analytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39(2), 602–611 (2005b)CrossRefGoogle Scholar
  22. 22.
    Oldenburg, C., Pruess, K., Benson, S.: Process modeling of CO2 injection into natural gas reservoirs for Carbon sequestration and enhanced gas recovery. Energy Fuels 15(2), 293–298 (2001)CrossRefGoogle Scholar
  23. 23.
    Pruess, K.: Thermal effects during CO2 leakage from a geologic storage reservoir. Lawrence Berkeley National Laboratory Report LBNL-55913 (2004)Google Scholar
  24. 24.
    Pruess, K., Bielinski, A., Ennis-King, J., Fabriol, R., Le Gallo, Y., Garcia, J., Jessen, K., Kovscek, T., Law, D.-S., Lichtner, P., Oldenburg, C., Pawar, R., Rutqvist, J., Steefel, C., Travis, B., Tsang, C.-F., White, S., Xu, T.: Code intercomparison builds confidence in numerical models for geologic disposal of CO2. In: Gale, J., Kaya, Y. (eds.) GHGT-6 Conference Proceedings: Greenhouse Gas Control Technologies, pp. 463–470 (2003)Google Scholar
  25. 25.
    Pruess, K., Garcia, J.: Multiphase flow dynamics during CO2 injection into saline aquifers. Environ. Geol. 42, 282–295 (2002)CrossRefGoogle Scholar
  26. 26.
    Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25(6), 1509–1596 (1996)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institut für Wasserbau, Lehrstuhl für Hydromechanik und HydrosystemmodellierungUniversität StuttgartStuttgartGermany

Personalised recommendations