Computational Geosciences

, Volume 10, Issue 2, pp 179–200 | Cite as

Probabilistic model for eruptions and associated flood events in the Katla caldera, Iceland

  • Jonas EliassonEmail author
  • Gudrun Larsen
  • Magnus Tumi Gudmundsson
  • Freysteinn Sigmundsson

Eruptions in the subglacial Katla caldera, South Iceland, release catastrophic jokulhlaups (meltwater floods). The ice surface topography divides the caldera into three drainage sectors (Ko, So and En sectors) that drain onto Myrdalssandur, Solheimasandur and Markarfljot plains, respectively. In historical times, floods from the Ko sector have been dominant, with only two recorded So events. Geological records indicate that floods from the En sector occur every 500–800 years. A probabilistic model for an eruption is formulated in general terms by a stochastic parameter that simulates a series giving the time interval in years between two consecutive events. The model also contains a Markovian matrix that controls the location of the event and thereby what watercourse is hit by the flood. A record of Katla eruptions since the 8th and the 9th century a.d., and geological information of volcanogenic floods towards the west over the last 8,000 years is used to calibrate the model. The model is then used to find the probabilities for floods from the three sectors: Ko, So and En. The simulations predict that the most probable eruption interval for the En sector and the So sector is several times smaller than the average time interval, implying infrequent periods of high activity in these sectors. A correlation is found between the magnitude of eruptions and the following time intervals. Using the statistical approach and considering this magnitude–time interval correlation, the probability of an eruption in Katla volcano is considered to be 20% within the next 10 years. This compares to a probability of 93% if only a simple average is considered. These probabilities do not take account of long-term eruption precursors and should therefore be regarded as minimum values.


Katla volcano volcanic eruptions jokulhlaups catastrophic floods probabilistic modeling simulations Markov processes eruption probabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bjornsson, F. Palsson and M.T. Gudmundsson, Surface and bedrock topography of the Myrdalsjokull ice cap, Iceland, Jokull 49 (2000) 29–46.Google Scholar
  2. 2.
    S. Rist, Vatns er thorf [Water is a need] (Menningarsjodur, Reykjavik, 1990) 248 pp. Google Scholar
  3. 3.
    S. Thorarinsson, Katla og annall Kotlugosa [Katla volcano and annals of Katla eruptions], Arbok Ferdafelags Islands (1975) 125–149.Google Scholar
  4. 4.
    G. Larsen, Holocene eruptions within the Katla volcanic system, south Iceland: characteristics and environmental impact, Jokull 49 (2000) 1–28.Google Scholar
  5. 5.
    H. Tomasson, The jokulhlaup from Katla in 1918, Ann. Glaciol. 22 (1996) 249–254.Google Scholar
  6. 6.
    S.J. Cronin, M. Bebbington and C.D. Lai, A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji, Bull. Volcanol. 63 (2001) 274–288.CrossRefGoogle Scholar
  7. 7.
    S. Thorarinsson, On the predicting of volcanic eruptions in Iceland, Bull. Volcanol. XXIII (1960) 45–53.CrossRefGoogle Scholar
  8. 8.
    F.E. Wickman, Repose-period patterns of volcanoes. IV. Eruption histories of some selected volcanoes, Ark. Mineral. Geol. 4 (1966) 337–350.Google Scholar
  9. 9.
    J.E. Thorlaksson, A probability model of volcanoes and the probability of Eruptions of Hekla and Katla, Bull. Volcanol. XXXI (1967) 97–106.CrossRefGoogle Scholar
  10. 10.
    G.E. Sigvaldason, Volcanic prediction in Iceland, NVI Research Report 7902, Nordic Volcaological Institute, Reykjavik (1979) 26 p.Google Scholar
  11. 11.
    G. Gudmundsson and K. Saemundsson, Statistical analysis of damaging earthquakes and volcanic eruptions in Iceland from 1550–1978, J. Geophys. 47 (1980) 99–109.Google Scholar
  12. 12.
    E. Sturkell, F. Sigmundsson and P. Einarsson, Recent unrest and magma movements at Eyjafjallajokull and Katla volcanoes, Iceland, J. Geophys. Res. 108(B8) (2003) 2369, doi:10.1029/2001JB000917.CrossRefGoogle Scholar
  13. 13.
    E. Sturkell, P. Einarsson, F. Sigmundsson, H. Geirsson, H. Olafsson, R. Olafsdottir and G.B. Gudmundsson, Thrystingur vex undir Kotlu [Increasing magma pressure under Katla], Natturufraedingurinn 71 (2003) 80–86.Google Scholar
  14. 14.
    Skyrslur um Kotlugos [Reports on the eruptions of Katla], Safn til sögu Íslands IV, (Hid Islenzka Bokmenntafelag, Kaupmannahofn og Reykjavik, 1907–1915) pp. 186–294.Google Scholar
  15. 15.
    G. Sveinsson, Kotlugosid 1918 og afleidingar thess [The 1918 Eruption of Katla and Its Consequences] (Prentsmidjan Gutenberg, Reykjavik, 1919) 61 pp.Google Scholar
  16. 16.
    G. Johannson, Kotlugosid 1918 [The Katla Eruption of 1918], (Prentsmidjan Gutenberg, Reykjavik, 1919) 70 pp.Google Scholar
  17. 17.
    G. Larsen, Gjoskulog i nagrenni Kotlu [Tephra Layers in the Vicinity of Katla], B.Sc. hons. thesis, University of Iceland, Reykjavik (1978) 57 pp. Google Scholar
  18. 18.
    M.T. Gudmundsson, Melting of ice by magma–ice–water interactions during subglacial eruptions as an indicator of heat transfer in subaqueous eruptions, in: Explosive Subaqueous Volcanism, Geophysical Monograph 140, eds. J.D.L. White, J.L. Smellie and D. Clague (American Geophysical Union, 2003) pp. 61–72.Google Scholar
  19. 19.
    M.T. Gudmundsson, F. Sigmundsson, H. Bjornsson and Th. Hognadottir, The 1996 eruption at Gjalp, Vatnajokull ice cap, Iceland: efficiency of heat transfer, ice deformation and subglacial water pressure, Bull. Volcanol. 66 (2004) 46–65.CrossRefGoogle Scholar
  20. 20.
    B.A. Oladottir, Eruption history and magmatic evolution at the Katla volcanic system, Iceland, during the Holocene, DEA thesis, Universite Blaise Pascal, Clermont-Ferrand (2004).Google Scholar
  21. 21.
    H. Haraldsson, The Markarfljot Sandur Area, Southern Iceland: Sedimentological, Petrographical and Stratigraphical studies, Ph.D. thesis (Uppsala University, Uppsala, 1981) 65 pp.Google Scholar
  22. 22.
    F. Sigurdsson Fold og votn ad Fjallabaki [Rivers and range in the Fjallabak area], Arbok Ferdafelags Islands (1988) 181–202.Google Scholar
  23. 23.
    K.T. Smith, A.J. Dugmore, G. Larsen, E.G. Vilmundardottir and H. Haraldsson, New evidence for Holocene jokulhlaup routes west of Myrdalsjokull, in: The 25 Nordic Geological Winter Meeting Abstracts volume, ed. S.S. Jonsson (Reykjavik, 2002) p. 196.Google Scholar
  24. 24.
    I. Kaldal and E.G. Vilmundardottir, Jokulmenjar a Emstrum, nordvestan Myrdalsjokuls, Research Report OS-2002/080 (Orkustofnun, Reykjavik, 2002) 29 pp. Google Scholar
  25. 25.
    G. Larsen, K. Smith, A.J. Newton and O. Knudsen, Jokulhlaup til vesturs fra Myrdalsjokli: Ummerki um forsoguleg hlaup nidur Markarfljot. [Jokulhlaups towards west from Myrdalsjokull: Prehistoric floods in Markarfljot river], in: Hættumat vegna eldgosa og hlaupa frá vestanverðum Myrdalsjokli og Eyjafjallajokli (Rikislogreglustjori, Reykjavik, 2005) pp. xx–yy (in Icelandic).Google Scholar
  26. 26.
    S. Thorarinsson, Langleiðir gjosku ur þremur Kotlugosum, Jokull 30 (1980) 65–73.Google Scholar
  27. 27.
    O. Gudmundsson, B. Brandsdottir, W. Menke and G.E. Sigvaldason, The crustal magma chamber of the Katla volcano in south Iceland revealed by 2-D seimic undershooting, Geophys. J. Int. 119 (1994) 277–296.CrossRefGoogle Scholar
  28. 28.
    P. Einarsson and B. Brandsdottir, Earthquakes in the Myrdalsjokull area, Iceland, 1978–1985: seasonal correlation and connection with volcanoes, Jokull 49 (2000) 59–74.Google Scholar
  29. 29.
    M.T. Gudmundsson, The structure of Katla, a central volcano in a propagating rift zone, south Iceland from gravity data, EOS Trans. AGU 75 (1994) 335.Google Scholar
  30. 30.
    G. Jonsson and L. Kristjansson, Aeromagnetic measurements over Myrdalsjokull and vicinity, Jokull 49 (2000) 47–58.Google Scholar
  31. 31.
    M.S. Bebbington and C.D. Lai, Statistical analysis of New Zealand volcanic occurrence data, J. Volcanol. Geotherm. Res. 74 (1996) 101–110.CrossRefGoogle Scholar
  32. 32.
    W. Marzocchi, L. Sandri, P. Gasparini, C. Newhall and E. Boschi, Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius, J. Geophys. Res. 109 (2004) B11201.CrossRefGoogle Scholar
  33. 33.
    C.B. Connor and B.E. Hill, Three nonhomogeneous Poisson models for the probability of basaltic volcanism: application to the Yucca Mountain region, Nevada, J. Geophys. Res. 100 (1995) 10107–10125.CrossRefGoogle Scholar
  34. 34.
    G.P.L. Walker, Basaltic volcanoes and volcanic systems, in: Encyclopedia of volcanoes, ed. H. Sigurdsson (Academic Press, San Diego, 2000) 283–289.Google Scholar
  35. 35.
    K.V. Mardia, J.T. Kent and J.M. Bibby, Multivariate Analysis (Academic Press, London, 1979).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jonas Eliasson
    • 1
    Email author
  • Gudrun Larsen
    • 2
  • Magnus Tumi Gudmundsson
    • 2
  • Freysteinn Sigmundsson
    • 3
  1. 1.Engineering Research InstituteUniversity of IcelandReykjavikIceland
  2. 2.Institute of Earth SciencesUniversity of IcelandReykjavikIceland
  3. 3.Nordic Volcanological CentreInstitute of Earth SciencesReykjavikIceland

Personalised recommendations