Advertisement

Synthesis of ferrocene-based polysubstituted pyrrolidines

  • Wensheng ZhangEmail author
  • Wenjing Xu
  • Chunyu Ma
  • Yan Li
Article
  • 11 Downloads

Ferrocene-based polysubstituted pyrrolidines can be synthesized efficiently via 1,3-dipolar cycloaddition of azomethine ylides generated from α-amino acid ester and ferrocenecarboxaldehyde with N-substituted maleimide at 125°C in MeCN. The structures of the products were confirmed by 1H, 13C NMR, and HRMS data.

Keywords

azomethine ylides ferrocene pyrrolidine 1,3-dipolar cycloaddition 

Notes

This work was supported by key natural science research program of Henan education department (20B150014).

Supplementary material

10593_2019_2560_MOESM1_ESM.pdf (948 kb)
ESM 1 (PDF 947 kb)

References

  1. 1.
    Wu, Z.-Y.; Zhong, R.; Yang, F.-Z. J. Organomet. Chem. 2017, 840, 75.CrossRefGoogle Scholar
  2. 2.
    (a) Jouikov, V.; Simonet, J. Langmuir 2012, 28, 931. (b) Erb, W.; Hurvois, J.-P.; Roisnel, T.; Dorcet, V. Organometallics 2018, 37, 3780.Google Scholar
  3. 3.
    Flores, J. R.; Pérez, F.; Jiménez-Barrera, R. M.; Arias, E.; Moggio, I.; Torres, R.; Rodríguez, G.; Ottonelli, M.; Ziolo, R. F. J. Organomet. Chem. 2018, 861, 131.CrossRefGoogle Scholar
  4. 4.
    Luo, S.; Xiong, Z.; Lu, Y.; Zhu, Q. Org. Lett. 2018, 20, 1837.CrossRefGoogle Scholar
  5. 5.
    (a) Top, S.; Tang, J.; Vessières, A.; Carrez, D.; Provot, C.; Jaouen, G. Chem. Commun. 1996, 955. (b) Ferreira, C. L.; Ewart, C. B.; Barta, C. A.; Little, S.; Yardley, V.; Martins, C.; Polishchuk, E.; Smith, P. J.; Moss, J. R.; Merkel, M.; Adam, M. J.; Orvig, C. Inorg. Chem. 2006, 45, 8414. (c) Jovanović, J. P.; Novaković, S. B.; Bogdanović, G. A.; Minić, A.; Pejović, A.; Katanić, J.; Mihailović, V.; Nastasijević, B.; Stevanović, D.; Damljanović, I. J. Organomet. Chem. 2018, 860, 85.Google Scholar
  6. 6.
    (a) Mu, C.; Prosser, K. E.; Harrypersad, S.; MacNeil, G. A.; Panchmatia, R.; Thompson, J. R.; Sinha, S.; Warren, J. J.; Walsby, C. J. Inorg. Chem. 2018, 57, 15247. (b) Braga, S. S.; Silva, A. M. S. Organometallics 2013, 32, 5626. (c) Larik, F. A.; Saeed, A.; Fattah, T. A.; Muqadar, U.; Channar, P. A. Appl. Organometal. Chem. 2017, 31, e3664. (d) Ge, M.; Huang, H.; Gou, X.; Hua, C.; Chen, B.; Zhao, J. Chem. Heterocycl. Compd. 2018, 54, 951. [Khim. Geterotsikl. Soedin. 2018, 54, 951.]Google Scholar
  7. 7.
    (a) Garve, L. K. B.; Kreft, A.; Jones, P. G.; Werz, D. B. J. Org. Chem. 2017, 82, 9235. (b) Yu, Y.-F.; Shu, C.; Tan, T.-D.; Li, L.; Rafique, S.; Ye, L.-W. Org. Lett. 2016, 18, 5178. (c) Skvorcova, M.; Jirgensons, A. Org. Lett. 2017, 19, 2478. (d) Chang, D.; Zhao, R.; Wei, C.; Yao, Y.; Liu, Y.; Shi, L. J. Org. Chem. 2018, 83, 3305.Google Scholar
  8. 8.
    (a) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (b) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.Google Scholar
  9. 9.
    (a) Rück-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507. (b) Majik, M. S.; Tilve, S. G. Synthesis 2012, 2673. (c) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.; Tang, M. Synlett 2004, 2670. (d) Gautam, L. N.; Wang, Q.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Org. Biomol. Chem. 2013, 11, 1917. (e) Mancebo-Aracil, J.; Nájera, C.; Sansano, J. M. Chem. Commun. 2013, 49, 11218. (f) Lim, A. D.; Codelli, J. A.; Reisman, S. E. Chem. Sci. 2013, 4, 650. (g) Obydennov, K. L.; Galushchinskiy, A. N.; Kosterina, M. F.; Glukhareva, T. V.; Morzherin, Y. Y. Chem. Heterocycl. Compd. 2017, 53, 622. [Khim. Geterotsikl. Soedin. 2017, 53, 622.] (h) Saliyeva, L. M.; Slyvka, N. Y.; Mel'nyk, D. A.; Rusanov, E. B.; Vas'kevich, R. I.; Vovk, M. V. Chem. Heterocycl. Compd. 2018, 54, 130. [Khim. Geterotsikl. Soedin. 2018, 54, 130.] (i) Smolobochkin, A. V.; Gazizov, A. S.; Burilov, A. R.; Pudovik, M. A. Chem. Heterocycl. Compd. 2016, 52, 753. [Khim. Geterotsikl. Soedin. 2016, 52, 753.] (j) Pavlovska, T. L.; Lipson, V. V.; Shishkina, S. V.; Musatov, V. I.; Nichaenko, J. A.; Dotsenko, V. V. Chem. Heterocycl. Compd. 2017, 53, 460. [Khim. Geterotsikl. Soedin. 2017, 53, 460.]Google Scholar
  10. 10.
    (a) Zhang, W.; Lu, Y.; Chen, C. H.-T.; Zeng, L.; Kassel, D. B. J. Comb. Chem. 2006, 8, 687. (b) Zhang, X.; Zhi, S.; Wang, W.; Liu, S.; Jasinski, J. P.; Zhang, W. Green Chem. 2016, 18, 2642. (c) Zhang, X.; Legris, M.; Muthengi, A. M.; Zhang, W. Chem. Heterocycl. Compd. 2017, 53, 468. [Khim. Geterotsikl. Soedin. 2017, 53, 468.] (d) Muthengi, A.; Zhang, X.; Dhawan, G.; Zhang, W.; Corsini, F.; Zhang, W. Green Chem. 2018, 20, 3134. (e) Zhang, X.; Qiu, W.; Ma, X.; Evans, J.; Kaur, M.; Jasinski, J. P.; Zhang, W. J. Org. Chem. 2018, 83, 13536.Google Scholar
  11. 11.
    (a) Dogan, Ö.; Koyuncu, H. J. Organomet. Chem. 2001, 631, 135. (b) Dogan, Ö.; Öner, I.; Ülkü, D.; Arici, C. Tetrahedron: Asymmetry 2002, 13, 2099.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wensheng Zhang
    • 1
    • 2
    Email author
  • Wenjing Xu
    • 2
  • Chunyu Ma
    • 1
  • Yan Li
    • 2
  1. 1.Department of Metallurgy and Chemical EngineeringJiyuan Vocational and Technical CollegeJiyuanChina
  2. 2.School of ScienceJiaozuo Teachers CollegeJiaozuoChina

Personalised recommendations