Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 9, pp 834–838 | Cite as

A novel one-pot synthesis method of 3,4,5-triaryl-substituted 1,2,4-triazoles

  • Igor K. Yakuschenko
  • Natal’ya N. Pozdeeva
  • Svyatoslav Ya. GadomskyEmail author
Article
  • 29 Downloads

A novel method for the preparation of 3,4,5-triaryl-substituted 1,2,4-triazoles by the reaction of hydrazides with secondary amides in polyphosphoric ester has been developed. The new method is characterized by mild conditions and ease of synthesis, including the stages of isolation and purification of the product. Additionally, product structures were confirmed by counter synthesis. It was shown that the proposed method is suitable for producing 1,2,4-triazoles with phenolic substituents without the stages of the protection and deprotection of the hydroxyl group. Using the new method, five 3,4,5-substituted 1,2,4-triazoles were obtained for the first time.

Keywords

hydrazides polyphosphoric ester secondary amides 3,4,5-substituted 1,2,4-triazoles one-pot synthesis 

Notes

The work was carried out on the topic "“Design, fundamental research on the structure, properties, and mechanisms of the biological action of new small molecules and supramolecular systems to create innovative targeted drugs for the treatment of socially significant diseases” of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation to Institute of Problems of Chemical Physics of the Russian Academy of Sciences (State registration number 0089-2019-0014).

References

  1. 1.
    Swathi, N. P.; Alva, V. D. P.; Samshuddin, S. J. Bio Tribo-Corros.2017, 3, 42.CrossRefGoogle Scholar
  2. 2.
    Diaz-Ortiz, A.; Prieto, P.; Carrillo, J. R.; Martín, R; Torres, I. Curr. Org. Chem.2015, 19, 568.CrossRefGoogle Scholar
  3. 3.
    Maddila, S.; Pagadala, R.; Jonnalagadda, S. B. Lett. Org. Chem.2013, 10, 693.CrossRefGoogle Scholar
  4. 4.
    Kumar, R.; Yar, M. S.; Chaturvedi, S.; Srivastava, A. Int. J. PharmTech Res.2013, 5, 1844.Google Scholar
  5. 5.
    Sharma, J.; Ahmad, S.; Alam, M. S. J. Chem. Pharm. Res.2012, 4, 5157.Google Scholar
  6. 6.
    Al-Masoudi, I. A.; Al-Soud, Y. A.; Al-Salihi, N. J.; Al-Masoudi, N. A. Chem. Heterocycl. Compd. 2006, 42, 1377. [Khim. Geterotsikl. Soedin.2006, 1605.]Google Scholar
  7. 7.
    El-Sherief, H. A. M; Youssif, B. G. M; Bukhari, S. N. A; Abdel-Aziz, M.; Abdel-Rahman, H. M. Bioorg. Chem.2018, 76, 314.CrossRefGoogle Scholar
  8. 8.
    Okada, H. US Patent 6194090B1.Google Scholar
  9. 9.
    Oka, H; Joshi, R. V.; Tanabe, J.; Lahiri, S.; Vashi, D.; Ghogale, P. WO Patent 2006114377 A1.Google Scholar
  10. 10.
    Srivastava, R.; Joshi, L. R. Phys. Chem. Chem. Phys.2014, 16, 17284.CrossRefGoogle Scholar
  11. 11.
    Moulin, A.; Bibian, M.; Blayo, A.-L.; El Habnouni, S.; Martinez, J.; Fehrentz, J.-A. Chem. Rev.2010, 110, 1809.CrossRefGoogle Scholar
  12. 12.
    Klingele, M. H.; Brooker, S. Eur. J. Org. Chem.2004, 3422.Google Scholar
  13. 13.
    Lindstrom, J.; Johansson, M. H. Synth. Commun.2006, 36, 2217.CrossRefGoogle Scholar
  14. 14.
    Zhu, Y.; Olson, S. H.; Graham, D.; Patel, G.; Hermanowski-Vosatka, A.; Mundt, S.; Shah, K.; Springer, M.; Thieringer, R.; Wright, S.; Xiao, J.; Zokian, H.; Dragovic, J.; Balkovec, J. M. Bioorg. Med. Chem. Lett.2008, 18, 3412.CrossRefGoogle Scholar
  15. 15.
    Bechara, W. S.; Khazhieva, I. S.; Rodriguez, E.; Charette, A. B. Org. Lett.2015, 17, 1184.CrossRefGoogle Scholar
  16. 16.
    Kanaoka, Y.; Sato, E.; Yonemitsu, O.; Ban, Y. Tetrahedron Lett. 1964, 35, 2419.CrossRefGoogle Scholar
  17. 17.
    Kanaoka, Y.; Yonemitsu, O.; Tanizawa, K.; Ban, Y. Chem. Pharm. Bull. 1964, 12, 773.CrossRefGoogle Scholar
  18. 18.
    Schramm, G.; Grotsch, H; Pollmann, W. Angew. Chem., Int. Ed.1962, 1, 1.CrossRefGoogle Scholar
  19. 19.
    Yale, H. L.; Losee, K.; Martins, J.; Holsing, M.; Perry, F. M.; Bernstein, J. J. Am. Chem. Soc.1953, 75, 1933.CrossRefGoogle Scholar
  20. 20.
    Feng, H.; Leng. L.; Liu, J.; Tang, Y.; Tang. P.; Zhang, C.; Tang, X.; Jiao, S. Asian J. Chem.2013, 25, 4029.CrossRefGoogle Scholar
  21. 21.
    Fox, H. H.; Gibas, J. T. J. Org. Chem.1952, 17, 1653.CrossRefGoogle Scholar
  22. 22.
    Nesterova, E. Yu.; Voevudky, M. V.; Samukha, A. V.; Zubatyuk, R. I.; Shishkin, O. V. Chem. Heterocycl. Compd. 2005, 41, 1511. [Khim. Geterotsikl. Soedin.2005, 1834.]Google Scholar
  23. 23.
    Horwitz, J. P.; Grakauskas, V. A. J. Org. Chem.1954, 19, 194.CrossRefGoogle Scholar
  24. 24.
    Larner, B. W.; Peters, A. T. J. Chem. Soc.1952, 680.Google Scholar
  25. 25.
    Hsieh, J.-C.; Cheng, C.-H. Chem. Commun.2005, 36, 4554.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Igor K. Yakuschenko
    • 1
  • Natal’ya N. Pozdeeva
    • 1
  • Svyatoslav Ya. Gadomsky
    • 1
    Email author
  1. 1.Institute of Problems of Chemical Physics of the Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations