Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 2, pp 135–141 | Cite as

Synthetic modifications of carboline alkaloid harmine: synthesis of 8-substituted derivatives

  • Sergazy M. Adekenov
  • Pernesh Zh. Zhanimkhanova
  • Zhangeldy S. Nurmaganbetov
  • Asel Amanzhan
  • Sergey V. Chernov
  • Aibek Zh. Turmukhambetov
  • Irina Yu. Bagryanskaya
  • Yurii V. Gatilov
  • Elvira E. ShultsEmail author
Article
  • 40 Downloads

Hybrid molecules containing β-carboline and 1-acetylpyrazoline moieties were obtained on the basis of the alkaloid harmine. The synthetic procedure included acetylation of harmine with acetyl chloride in the presence of tin(IV) chloride, Claisen–Schmidt condensation with benzaldehydes under basic conditions, and cyclization of the obtained chalcones by the action of hydrazine hydrate and acetic acid. In addition, a method was proposed for the preparation of 8-formylharmine by treating harmine with dichloromethoxymethane in the presence of tin(IV) chloride. The structures of the synthesized compounds were confirmed by NMR spectra, mass spectra, and X-ray structural analysis.

Keywords

8-acetylharmine β-carbolines chalcones 8-formylharmine pyrazolines X-ray structural analysis 

Notes

This work was performed within the framework of grant project No. АР05135304 "Chemical studies of alkaloid-containing plants as promising sources of biologically active compounds” funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan and with partial financial support from the Russian Science Foundation (grant 18-13-00361).

The analytical and spectral characterization was performed in part at the Chemistry Collective Use Center of N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences.

References

  1. 1.
    Baitulin, I. O.; Adekenov, S. M.; Egeubaeva, R. A.; Saparbaeva, N. A. Izv. NAN Rep. Kazakhstan. Ser. Biol. i Med. 2010, (5), 55.Google Scholar
  2. 2.
    (a) Patel, K.; Gadewar, M.; Tripathi, R.; Prasad, S. K.; Patel, D. K. Asian Pac. J. Trop. Biomed. 2012, 2, 660. (b) Li, S.; Cheng, X.; Wang, C. J. Ethnopharmacol. 2017, 203, 127.Google Scholar
  3. 3.
    (a) Ishida, J.; Wang, H.-K.; Bastow, K. F.; Hu, C.-Q.; Lee, K.-H. Bioorg. Med. Chem. Lett. 1999, 9, 3319. (b) Cao, R.; Peng, W.; Chen, H.; Ma, Y.; Liu, X.; Hou, X.; Guan, H.; Xu, A. Biochem. Biophys. Res. Commun. 2005, 338, 1557. (d) Liu, J.; Li, Q.; Liu, Z.; Lin, L.; Zhang, X.; Cao, M.; Jiang, J. Oncol. Rep. 2016, 35, 3363. (e) Li, C.; Wang, Y.; Wang, C.; Yi, X.; Li, M.; He, X. Phytomedicine 2017, 28, 10.Google Scholar
  4. 4.
    (a) Chen, D.; Su, A.; Fu, Y.; Wang, X.; Lv, X.; Xu, W.; Xu, S.; Wang, H.; Wu, Z. Antiviral Res. 2015, 123, 27. (b) Quintana, V. M.; Piccini, L. E.; Panozzo Zénere, J. D.; Damonte, E. B.; Ponce, M. A.; Castilla, V. Antiviral Res. 2016, 134, 26. (c) Chen, D.; Tian, X.; Zou, X.; Xu, S.; Wang, H.; Zheng, N.; Wu, Z. Int. Immunopharmacol. 2018, 60, 111.Google Scholar
  5. 5.
    (a) Zhao, F.; Gao, Z.; Jiao, W.; Chen, L.; Chen, Lei; Yao, X. Planta Med. 2012, 78, 1906. (b) Hamsa, T. P.; Kuttan, G. Eur. J. Pharmacol. 2010, 649, 64. (c) Liu, X.; Li, M.; Tan, S.; Wang, C.; Fan, S.; Huang, C. Biochem. Biophys. Res. Commun. 2017, 489, 332.Google Scholar
  6. 6.
    (a) Sun, P.; Zhang, S.; Li, Y.; Wang, L. Neurosci. Lett. 2014, 583, 32. (b) Li, S.-P.; Wang, Y.-W.; Qi, S.-L.; Zhang, Y.-P.; Deng, G.; Ding, W.-Z.; Ma, C.; Lin, Q.-Y.; Guan, H.-D.; Liu, W.; Cheng, H.-M.; Wang, C.-H. Front. Pharmacol. 2018, 9, 346. (c) Liu, W.-Z.; Huang, B.-W.; You, W.-J.; Hu, P.; Wang, X.-H.; Zhang, J.-Y.; Xu, X.-B.; Zhang, Z.-Y.; Pan, B.-X.; Zhang, W.-H. Brain Res. Bull. 2018, 137, 294.Google Scholar
  7. 7.
    (a) Kim, H.; Sablin, S. O.; Ramsay, R. R. Arch. Biochem. Biophys. 1997, 337, 137. (b) Son, S.-Y.; Ma, J.; Kondou, Y.; Yoshimura, M.; Yamashita, E.; Tsukihara, T. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 5739. (c) Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V. J.; Guillén, H. Food Chem. Toxicol. 2010, 48, 839.Google Scholar
  8. 8.
    (a) Yang, Y. D.; Cheng, X. M.; Liu, W.; Chou, G.; Wang, Z.; Wang, C. J. Ethnopharmacol. 2015, 168, 279. (b) He, D.; Wu, H.; Wei, Y.; Liu, W.; Huang, F.; Shi, H.; Zhang, B.; Wu, X.; Wang, C. Eur. J. Pharmacol. 2015, 768, 96.Google Scholar
  9. 9.
    Filali, I.; Bouajila, J.; Znati, M.; Bousejra-El Garah, F.; Ben Jannet, H. J. Enzyme Inhib. Med. Chem. 2015, 30, 371. (b) Filali, I.; Romdhane, A.; Znati, M.; Jannet, H. B.; Bouajila, J. Med. Chem. 2016, 12, 184.Google Scholar
  10. 10.
    Bayih, A. G.; Folefoc, A.; Mohon, A. N.; Eagon, S.; Anderson, M.; Pilla, D. R. Malar. J. 2016, 15, 579.CrossRefGoogle Scholar
  11. 11.
    (a) Frédérick, R.; Bruyére, C.; Vancraeynest, C.; Reniers, J.; Meinguet, C.; Pochet, L.; Backlund, A.; Masereel, B.; Kiss, R.; Wouters, J. J. Med. Chem. 2012, 55, 6489. (b) Du, H.; Tian, S.; Chen, J.; Gu, H.; Li, N.; Wang, J. Bioorg. Med. Chem. Lett. 2016, 26, 4015. (c) Reddy, P. O. V.; Mishra, S.; Tantak, M. P.; Nikhil, K.; Sadana, R.; Shah, K.; Kumar, D. Bioorg. Med. Chem. Lett. 2017, 27, 1379.Google Scholar
  12. 12.
    (a) Cao, R.; Fan, W.; Guo, L.; Ma, Q.; Zhang, G.; Li, J.; Chen, X.; Ren, Z.; Qiu, L. Eur. J. Med. Chem. 2013, 60, 135. (b) Meinguet, C.; Bruyère, C.; Frédérick, R.; Mathieu, V.; Vancraeynest, C.; Pochet, L.; Laloy, J.; Mortier, J.; Wolber, G.; Kiss, R.; Masereel, B.; Wouters, J. Eur. J. Med. Chem. 2015, 94, 45. (c) Carvalho, A.; Chu, J.; Meinguet, C.; Kiss, R.; Vandenbussche, G.; Masereel, B.; Wouters, J.; Kornienko, A., Pelletier, J.; Mathieu, V. Eur. J. Pharmacol. 2017, 805, 25. (d) Zhang, X. F.; Sun, R. Q.; Jia, Y. F.; Chen, Q.; Tu, R. F.; Li, K. K.; Zhang, X. D.; Du, R. L.; Cao, R. H. Sci. Rep. 2016, 6, 33204. (e) Ayoob, I.; Hazari, Y. M.; Lone, S. H.; Shakeel-u-Rehman; Khuroo, M. A.; Fazili, K. M.; Bhat, K. A. ChemistrySelect 2017, 2, 2965. (f) Geng, X.; Ren, Y.; Wang, F.; Tian, D.; Yao, X.; Zhang, Y.; Tang, J. Biochem. Biophys. Res. Commun. 2018, 498, 99.Google Scholar
  13. 13.
    (a) Turmukhambetov, A. Zh.; Agedilova, M. T.; Nurmaganbetov, Zh. S.; Kazantsev, A. V.; Shults, E. E.; Shakirov, M. M.; Bagryanskaya, I. Yu.; Adekenov, S. M. Chem. Nat. Compd. 2009, 45, 601. [Khim. Prirod. Soedin. 2009, 504.] (b) Nurmaganbetov, Zh. S.; Shultz, E. E.; Chernov, S. V.; Turmukhambetov, A. Zh.; Seydakhmetova, R. B.; Shakirov, G. A.; Tolstikov, G. A.; Adekenov, S. M. Chem Heterocycl. Compd. 2011, 46, 1494. [Khim. Geterotsikl. Soedin. 2010, 1849.] (c) Nurmaganbetov, Zh. S.; Shultz, E. E.; Chernov, S. V.; Turmukhambetov, A. Zh.; Seydakhmetova, R. B.; Shakirov, M. M.; Tolstikov, G. A.; Adekenov, S. M. ChemInform 2011, 42. DOI:  https://doi.org/10.1002/chin.201139193.
  14. 14.
    (a) Larsen, L. K.; Moore, R. E.; Patterson, G. M. L. J. Nat. Prod. 1994, 57, 419. (b) Drung, B.; Scholz, C.; Barbosa, V. A.; Nazari, A.; Sarragiotto, M. H.; Schmidt, B. Bioorg. Med. Chem. Lett. 2014, 24, 4854. (c) Yañuk, J. G.; Denofrio, M. P.; Rasse-Suriani, F. A. O.; Villarruel, F. D.; Fassetta, F.; Einschlag, F. S. G.; Erra-Balsells, R.; Epe, B.; Cabrerizo, F. M. Org. Biomol. Chem. 2018, 16, 2170.Google Scholar
  15. 15.
    Ikeda, R.; Kimura, T.; Tsutsumi, T.; Tamura, S.; Sakai, N.; Konakahara, T. Bioorg. Med. Chem. Lett. 2012, 22, 3506.CrossRefGoogle Scholar
  16. 16.
    (a) Özdemir, A.; Sever, B.; Altintop, M. D.; Tilki, E. K.; Dikmen, M. Molecules 2018, 23, 2151. (b) Kumar, V.; Kaur, K.; Karelia, D. N.; Beniwal, V.; Gupta, G. K.; Sharma, A. K.; Gupta, A. K. Eur. J. Med. Chem. 2014, 81, 267. (с) George, R. F.; Fouad, M. A.; Gomaa, I. E. O. Eur. J. Med. Chem. 2016, 112, 48. (d) Koçyiğit-Kaymakçıoğlu, B.; Beyhan, N.; Tabanca, N.; Ali, A.; Wedge, D. E., Duke, S. O.; Bernier, U. R., Khan, I. A. Med. Chem. Res. 2015, 24, 3632.Google Scholar
  17. 17.
    Allen, F. H.; Kenard, O.; Watson, D. G.; Bramer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, 1.CrossRefGoogle Scholar
  18. 18.
    Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.CrossRefGoogle Scholar
  19. 19.
    Rowland, R. S.; Taylor, R. J. Phys. Chem. 1996, 100, 7384.CrossRefGoogle Scholar
  20. 20.
    Sheldrick, G. M. SADABS. Version 2.01; Bruker AXS Inc.: Madison, 2004.Google Scholar
  21. 21.
    Sheldrick, G. M. SHELX-97, Programs for Crystal Structure Analysis (Release 97-2); University of Göttingen, 1997.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sergazy M. Adekenov
    • 1
  • Pernesh Zh. Zhanimkhanova
    • 1
  • Zhangeldy S. Nurmaganbetov
    • 1
  • Asel Amanzhan
    • 1
  • Sergey V. Chernov
    • 2
  • Aibek Zh. Turmukhambetov
    • 1
  • Irina Yu. Bagryanskaya
    • 2
    • 3
  • Yurii V. Gatilov
    • 2
    • 3
  • Elvira E. Shults
    • 2
    • 3
    Email author
  1. 1.JSC International Research and Production Holding “Phytochemistry”KaragandaKazakhstan
  2. 2.N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations