Multicomponent synthesis of unsymmetrical 5-nitropyridines
- 27 Downloads
Reaction of 2-nitroacetophenone, furfurol, β-dicarbonyl compounds, and ammonium acetate led to 3-substituted 4-(2-furyl)-5-nitro-6-phenyl-1,4-dihydropyridines, which were oxidized with potassium nitrate in the presence of copper(II) nitrate (10 mol %), leading to the respective 5-nitro-6-phenylpyridines. The performed multicomponent reactions met the general principles of green chemistry. Synthesis of these unsymmetrical 5-nitro-6-phenylpyridines via the formation of 1,4-dihydropyridine intermediates under the conditions of multicomponent reaction significantly shortened the overall reaction time, decreased the number of steps, and improved the yield.
Keywords
5-nitro-1,4-dihydropyridines 5(3)-nitropyridines green chemistry multicomponent reactionNotes
This work received financial support from the Committee for Science, Ministry of Education and Science, Republic of Kazakhstan (grant No. AP05131602).
References
- 1.Multicomponent Reactions: Synthesis of Bioactive Heterocycles; Ameta, K. L.; Dandia, A., Eds.; CRC Press: Boca Raton, 2017, 1st ed.Google Scholar
- 2.Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083.CrossRefGoogle Scholar
- 3.Cioc, R. C.; Ruijter, E.; Orru, R. V. Green Chem. 2014, 16, 2958.CrossRefGoogle Scholar
- 4.(a) Sharma, G. V.; Reddy, K. L.; Lakshmi, P. S.; Krishna, P. R. Synthesis 2006, 55. (b) Debache, A.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Synlett 2008, 509. (c) Kumar, A.; Maurya, R. A. Synlett 2008, 883.Google Scholar
- 5.Multicomponent Reactions; Herrera, R. P.; Marquéz-López, E., Eds.; John Wiley & Sons, Inc: Hoboken, 2015, p. 477.Google Scholar
- 6.Zhou, Y.; Kijima, T.; Kuwahara, S.; Watanabe, M.; Izumi, T. Tetrahedron Lett. 2008, 49, 3757.CrossRefGoogle Scholar
- 7.Brown, A. M.; Kunze, D. L.; Yatani A. Nature 1984, 311, 570.CrossRefGoogle Scholar
- 8.Takahashi, D.; Oyunzul, L.; Onoue, S.; Ito, Y.; Uchida, S.; Simsek, R.; Gunduz, M. G.; Safak, C.; Yamada, S. Biol. Pharm. Bull. 2008, 31, 473.CrossRefGoogle Scholar
- 9.(a) Garaliene, V.; Barsys, V.; Mačys A.; Vigante, B.; Krauze, A. Eur. J Med Chem. 2011, 46, 4441. (b) Shan, R.; Velazquez, C.; Knaus, E. E. J. Med. Chem. 2004, 47, 254. (c) Visentin, S.; Rolando, B.; Di Stilo, A.; Frutterro, R.; Novara, M.; Carbone, E.; Roussel, C.; Vanthuyne, N.; Gasco, A. J. Med. Chem. 2004, 47, 2688.Google Scholar
- 10.Vigante, B. A.; Terekhova, M. I.; Ozols, Ya. Ya.; Petrov, E. S.; Dubur, G. Ya. Chem. Heterocycl. Compd. 1989, 25, 1028. [Khim. Geterotsikl. Soedin. 1989, 1228.]Google Scholar
- 11.Sagitullina, G. P.; Glizdinskaya, L. V.; Sagitullin, R. S. Russ. J. Org. Chem. 2007, 43, 602. [Zh. Org. Khim. 2007, 604.]Google Scholar
- 12.Zobenko, Y. A.; Pozhidaeva, S. A.; Kuratova, A. K.; Glyzdinskaya, L. V.; Vorontsova, M. A.; Sagitullina, G. P. Chem. Heterocycl. Compd. 2017, 53, 1014. [Khim. Geterotsikl. Soedin. 2017, 1014.]Google Scholar
- 13.Bakhareva, S. V.; Berkova, G. A.; Vereshchagina, Ya. A.; Fel'gendler, A. V.; Fattakhova, G. R. Russ. J. Gen. Chem. 2001, 71, 1942. [Zh. Obshch. Khim. 2001, 2049.]Google Scholar
- 14.Baraldi, P. G.; Simoni, D.; Manfredini, S. Synthesis 1983, 902.Google Scholar
- 15.Gavrilin, G. F.; Bykova, L. U.; Rogachkova, T. D.; Novikova, É. I.; Savel'eva, G. S. Pharm. Chem. J. 1973, 7, 173 [Khim.-Farm. Zh. 1973, 7(3), 43.]Google Scholar
- 16.
- 17.(a) Maquestiau, A.; Mayence, A.; Vanden Eynde, J. J. Tetrahedron Lett. 1991, 32, 3839. (b) Ghorbani- Choghamarani, A.; Zeinivand, J. Synth Commun. 2010, 40, 2457. (c) Balogh, M.; Hermecz, I.; Ménszáros, Z.; Laszlo, P. Helv. Chim. Acta 1984, 67, 2270. (d) Sabitha, G.; Kumar Reddy, G. S. K.; Reddy, C. S.; Fatima, N.; Yadav, J. S. Synthesis 2003, 1267. (e) Mashraqui, S. H.; Karnik, M. A. Synthesis 1998, 713. (f). Pfister, J. R. Synthesis 1990, 689.Google Scholar