Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 12, pp 1084–1107 | Cite as

1,3-Dipolar cycloaddition reactions of azomethine ylides and alkynes

  • Anna V. GulevskayaEmail author
  • Julia I. Nelina-Nemtseva
REVIEW
  • 45 Downloads

In this review, we consider 1,3-dipolar cycloaddition reactions between azomethine ylides and alkynes, resulting in the formation of pyrroles, as well as their hydrogenated and fused analogs. The references have been arranged according to the types of azomethine ylides and the methods used for their generation. The review is mainly focused on literature sources published since year 2000 and contains 133 references.

Keywords

alkynes azomethine ylides fused pyrroles pyrroles 1,3-dipolar cycloaddition 

Notes

Acknowledgment

This work was performed with financial support from the Southern Federal University (internal grant BnGr-

07/2017-18).

References

  1. 1.
    Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. H., Eds.; Wiley: New York, 2002.Google Scholar
  2. 2.
    Kanemasa, S. Synlett 2002, 1371.Google Scholar
  3. 3.
    Nájera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105.Google Scholar
  4. 4.
    Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.Google Scholar
  5. 5.
    Pellissier, H. Tetrahedron 2007, 63, 3235.Google Scholar
  6. 6.
    Stanley, L. M.; Sibi, M. P. Chem Rev. 2008, 108, 2887.Google Scholar
  7. 7.
    Bǎdoiu, A.; Brinkmann, Y.; Viton, F.; Kündig, E. P. Pure Appl. Chem. 2008, 80, 1013.Google Scholar
  8. 8.
    Gołȩbiewski, W. M.; Gucma, M. J. Heterocycl. Chem. 2008, 45, 1687.Google Scholar
  9. 9.
    Kanemasa, S. Heterocycles 2010, 82, 87.Google Scholar
  10. 10.
    Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845.Google Scholar
  11. 11.
    Nájera, C.; Sansano, J. M.; Yus, M. J. Braz. Chem. Soc. 2010, 21, 377.Google Scholar
  12. 12.
    Xing, Y.; Wang, N.-X. Coord. Chem. Rev. 2012, 256, 938.Google Scholar
  13. 13.
    Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.Google Scholar
  14. 14.
    Nájera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596.Google Scholar
  15. 15.
    Bel'skaya, N. P.; Bakulev, V. A.; Fan, Z. Chem. Heterocycl. Compd. 2016, 52, 627. [Khim. Geterotsikl. Soedin. 2016, 52, 627.]Google Scholar
  16. 16.
    Döndas, H. A.; De Gracia Retamosa, M.; Sansano, J. M. Synthesis 2017, 2819.Google Scholar
  17. 17.
    Bdiri, B.; Zhao, B.-J.; Zhou, Z.-M. Tetrahedron: Asymmetry 2017, 28, 876.Google Scholar
  18. 18.
    Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.Google Scholar
  19. 19.
    Pandey, G.; Dey, D.; Kumar Tiwari, S. Tetrahedron Lett. 2017, 58, 699.Google Scholar
  20. 20.
    Hladíková, V.; Váňa, J.; Hanusek, J. Beilstein J. Org. Chem. 2018, 14, 1317.Google Scholar
  21. 21.
    Wang, X.; Wang, X.; Wang, X.; Zhang, J.; Liu, C.; Hu, Y. Chem. Rec. 2017, 17, 1231.Google Scholar
  22. 22.
    Padwa, A. ARKIVOC 2018, (iv), 23.Google Scholar
  23. 23.
    Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187.Google Scholar
  24. 24.
    Matsumoto, K.; Uchida, T.; Konishi, H.; Watanabe, Y.; Aoyama, K.; Asahi, M. Chem. Lett. 1987, 16, 807.Google Scholar
  25. 25.
    Díaz-Ortiz, A.; Díez-Barra, E.; de la Hoz, A.; Loupy, A.; Petit, A.; Sánchez, L. Heterocycles 1994, 38, 785.Google Scholar
  26. 26.
    Matsumoto, K.; Uchida, T.; Sugi, T.; Yagi, Y. Chem. Lett. 1982, 11, 869.Google Scholar
  27. 27.
    Shang, Y.; Zhang, M.; Yu, S.; Ju, K.; Wang, C.; He, X. Tetrahedron Lett. 2009, 50, 6981.Google Scholar
  28. 28.
    Belguedj, R.; Bouraiou, A.; Bouacida, S.; Merazig, H.; Chibani, A. Z. Naturforsch., B: J. Chem. Sci. 2015, 70, 885.Google Scholar
  29. 29.
    Belguedj, R.; Bouacida, S.; Merazig, H.; Belfaitah, A.; Bouraiou, A. Z. Naturforsch., B: J. Chem. Sci. 2015, 70, 555.Google Scholar
  30. 30.
    Liu, H.; He, D.; Sun, Z.; He, W.; Han, J.; Chen, J.; Deng, H.; Shao, M.; Zhang, H.; Cao, W. Tetrahedron 2018, 74, 135.Google Scholar
  31. 31.
    Nelina-Nemtseva, J. I.; Gulevskaya, A. V.; Pozharskii, A. F.; Nguyen, H. T. L.; Filatova, E. A. Tetrahedron 2016, 72, 2327.Google Scholar
  32. 32.
    Rotaru, A. V.; Druta, I. D.; Oeser, T.; Müller, T. J. J. Helv. Chim. Acta 2005, 88, 1798.Google Scholar
  33. 33.
    Georgescu, E.; Georgescu, F.; Danila, M.; Barbu, L.; Dumitrascu, F. Rev. Chim. (Bucharest) 2009, 60, 883.Google Scholar
  34. 34.
    Georgescu, E.; Georgescu, F.; Filip, P.; Dumitrescu, D. G.; Dumitrascu, F. Rev. Chim. (Bucharest) 2008, 59, 883.Google Scholar
  35. 35.
    Georgescu, E.; Georgescu, F.; Filip, P.; Popa, M. M.; Dumitrascu, F. Rev. Chim. (Bucharest) 2008, 59, 1224.Google Scholar
  36. 36.
    Georgescu, E.; Georgescu, F.; Filip, P.; Miu, B.; Dumitrascu, F. Rev. Chim. (Bucharest) 2009, 60, 377.Google Scholar
  37. 37.
    Sashida, H.; Kato, M.; Tsuchiya, T. Chem. Pharm. Bull. 1988, 36, 3826.Google Scholar
  38. 38.
    Tsuchiya, T.; Kato, M.; Sashida, H. Chem. Pharm. Bull. 1984, 32, 4666.Google Scholar
  39. 39.
    Mochulskaya, N. N.; Andreiko, A. A.; Charushin, V. N.; Shulgin, B. V.; Raikov, D. V.; Solomonov, V. I. Mendeleev Commun. 2001, 11, 19.Google Scholar
  40. 40.
    Georgescu, E.; Caira, M. R.; Georgescu, F.; Drăghici, B.; Popa, M. M.; Dumitrascu, F. Synlett 2009, 1795.Google Scholar
  41. 41.
    Belguedj, R.; Bouacida, S.; Merazig, H.; Belfaitah, A.; Chibani, A.; Bouraiou, A. Z. Naturforsch., B: J. Chem. Sci. 2016, 71, 231.Google Scholar
  42. 42.
    Dumitrascu, F.; Caira, M. R.; Georgescu, E.; Georgescu, F.; Draghici, C.; Popa, M. M. Heteroat. Chem. 2011, 22, 723.Google Scholar
  43. 43.
    Caira, M. R.; Popa, M. M.; Draghici, C.; Barbu, L.; Dumitrescu, D.; Dumitrascu, F. Tetrahedron Lett. 2014, 55, 5635.Google Scholar
  44. 44.
    Albota, F.; Drăghici, K.; Caira, M. R.; Dumitrascu, F. Tetrahedron 2015, 71, 9095.Google Scholar
  45. 45.
    Caira, M. R.; Georgescu, E.; Georgescu, F.; Albota, F.; Dumitrascu, F. Monatsh. Chem. 2011, 142, 743.Google Scholar
  46. 46.
    Dumitrascu, F.; Caproiu, M. T.; Georgescu, F.; Draghici, B.; Popa, M. M.; Georgescu, E. Synlett 2010, 2407.Google Scholar
  47. 47.
    Butler, R. N.; Coyne, A. G.; McArdle, P.; Cunningham, D.; Burke, L. A. J. Chem. Soc., Perkin Trans. 1 2001, 1391.Google Scholar
  48. 48.
    Dumitraşcu, F.; Mitan, C. I.; Drăghici, C.; Căproiu, M. T.; Răileanu, D. Tetrahedron Lett. 2001, 42, 8379.Google Scholar
  49. 49.
    Ito, S.; Tokimaru, Y.; Nozaki, K. Chem. Commun. 2015, 51, 221.Google Scholar
  50. 50.
    Dumitrascu, F.; Caira, M. R.; Draghici, C.; Caproiu, M. T.; Badoiu, A. Molecules 2005, 10, 321.Google Scholar
  51. 51.
    Dumitrascu, F.; Draghici, C.; Caira, M. R.; Badoiu, A.; Barbu, L.; Cristea, M. ARKIVOC 2005, (x), 165.Google Scholar
  52. 52.
    Dumitrascu, F.; Caira, M. R.; Draghici, C.; Caproiu, M. T.; Barbu, L. Rev. Chim. (Bucharest) 2009, 60, 851.Google Scholar
  53. 53.
    Dumitrascu, F.; Georgescu, E.; Caira, M. R.; Georgescu, F.; Popa, M.; Draghici, B.; Dumitrescu, D. G. Synlett 2009, 3336.Google Scholar
  54. 54.
    Yavari, I.; Naeimabadi, M. Synth. Commun. 2018, 48, 632Google Scholar
  55. 55.
    Padwa, A.; Austin, D. J.; Precedo, L.; Zhi, L. J. Org. Chem. 1993, 58, 1144.Google Scholar
  56. 56.
    Nicolescu, A.; Deleanu, C.; Georgescu, E.; Georgescu, F.; Iurascu, A.-M.; Shova, S.; Filip, P. Tetrahedron Lett. 2013, 54, 1486.Google Scholar
  57. 57.
    Georgescu, E.; Nicolescu, A.; Georgescu, F.; Teodorescu, F.; Marinescu, D.; Macsim, A.-M.; Deleanu, C. Beilstein J. Org. Chem. 2014, 10, 2377.Google Scholar
  58. 58.
    Dumitrescu, D.; Georgescu, E.; Caira, M. R.; Draghici, C.; Dumitrascu, F. Synlett 2017, 2241.Google Scholar
  59. 59.
    Moldoveanu, C.; Zbancioc, G.; Mantu, D.; Maftei, D.; Mangalagiu, I. PLoS One 2016, 11, e0156129. DOI:  https://doi.org/10.1371/journal.pone.0156129 Google Scholar
  60. 60.
    Georgescu, E.; Nicolescu, A.; Georgescu, F.; Shova, S.; Teodorescu, F.; Macsim, A.-M.; Deleanu, C. Synthesis 2015, 643.Google Scholar
  61. 61.
    Georgescu, E.; Nicolescu, A.; Georgescu, F.; Teodorescu, F.; Shova, S.; Marinoiu, A. T.; Dumitrascu, F.; Deleanu, C. Tetrahedron 2016, 72, 2507.Google Scholar
  62. 62.
    Feng, J.-J.; Zhang, J. ACS Catal. 2016, 6, 6651.Google Scholar
  63. 63.
    Gomes, P. J. S.; Nunes, C. M.; Pais, A. A. C. C.; Pinho e Melo, T. M. V. D.; Arnaut, L. G. Tetrahedron Lett. 2006, 47, 5475.Google Scholar
  64. 64.
    Dolbier, W. R.; Zheng, Z. J. Org. Chem. 2009, 74, 5626.Google Scholar
  65. 65.
    Novikov, M. S.; Khlebnikov, A. F.; Sidorina, E. S.; Kostikov, R. R. J. Chem. Soc., Perkin Trans.1 2000, 231.Google Scholar
  66. 66.
    Li, G.-Y.; Chen, J.; Yu, W.-Y.; Hong, W.; Che, C.-M. Org. Lett. 2003, 5, 2153.Google Scholar
  67. 67.
    Galliford, C. V.; Scheidt, K. A. J. Org. Chem. 2007, 72, 1811.Google Scholar
  68. 68.
    Rajasekaran, T.; Karthik, G.; Sridhar, B.; Subba Reddy, B. V. Org. Lett. 2013, 15, 1512.Google Scholar
  69. 69.
    Padwa, A.; Chen, Y.-Y.; Dent, W.; Nimmesgern, H. J. Org. Chem. 1985, 50, 4006.Google Scholar
  70. 70.
    Tran, G.; Meier, R.; Harris, L.; Browne, D. L.; Ley, S. V. J. Org. Chem. 2012, 77, 11071.Google Scholar
  71. 71.
    Ischay, M. A.; Takase, M. K.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 2478.Google Scholar
  72. 72.
    Chen, S.; Bacauanu, V.; Knecht, T.; Mercado, B. Q.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2016, 138, 12664.Google Scholar
  73. 73.
    Tsuge, O.; Hatta, T.; Tashiro, H.; Kakura, Y.; Maeda, H.; Kakehi, A. Tetrahedron 2000, 56, 7723.Google Scholar
  74. 74.
    Komatsu, M.; Ohno, M.; Tsuno, S.; Ohshiro, Y. Chem. Lett. 1990, 19, 575.Google Scholar
  75. 75.
    Iyoda, M.; Sultana, F.; Komatsu, M. Chem. Lett. 1995, 24, 1133.Google Scholar
  76. 76.
    Washizuka, K.-I.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron 1999, 55, 12969.Google Scholar
  77. 77.
    Komatsu, M.; Okada, H.; Yokoi, S.; Minakata, S. Tetrahedron Lett. 2003, 44, 1603.Google Scholar
  78. 78.
    Komatsu, M.; Okada, H.; Akaki, T.; Oderaotoshi, Y.; Minakata, S. Org. Lett. 2002, 4, 3505.Google Scholar
  79. 79.
    Okada, H.; Akaki, T.; Oderaotoshi, Y,; Minakata, S.; Komatsu, M. Tetrahedron 2003, 59, 197.Google Scholar
  80. 80.
    Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5, 5043.Google Scholar
  81. 81.
    Komatsu, M.; Kasano, Y.; Yonemori, J.-i.; Oderaotoshi, Y.; Minakata, S. Chem. Commun. 2006, 526.Google Scholar
  82. 82.
    Mancebo-Aracil, J.; Nájera, C.; Sansano, J. M. Org. Biomol. Chem. 2013, 11, 662.Google Scholar
  83. 83.
    Shi, F.; Luo, S.-W.; Tao, Z.-L.; He, L.; Yu, J.; Tu, S.-J.; Gong, L.-Z. Org. Lett. 2011, 13, 4680.Google Scholar
  84. 84.
    Shi, F.; Tao, Z.-L.; Yu, J.; Tu, S.-J. Tetrahedron: Asymmetry 2011, 22, 2056.Google Scholar
  85. 85.
    Shi, F.; Xing, G.-J.; Tan, W.; Zhu, R.-Y.; Tu, S. Org. Biomol. Chem. 2013, 11, 1482.Google Scholar
  86. 86.
    Tan, W.; Du, B.-X.; Guo, L.; Li, M.; Xing, G.-J.; Shi, F. J. Heterocycl. Chem. 2015, 52, 1055.Google Scholar
  87. 87.
    Shi, F.; Zhu, R.-Y.; Liang, X.; Tu, S.-J. Adv. Synth. Catal. 2013, 355, 2447.Google Scholar
  88. 88.
    Wu, P.; Gao, H.; Sun, J.; Yan, C.-G. Chin. Chem. Lett. 2017, 28, 329.Google Scholar
  89. 89.
    Tan, W.; Zhu, X.-T.; Zang, S.; Xing, G.-J.; Zhu, R.-Y.; Shi, F. RSC Adv. 2013, 3, 10875.Google Scholar
  90. 90.
    Bashiardes, G.; Safir, I.; Mohamed, A. S.; Barbot, F.; Laduranty, J. Org. Lett. 2003, 5, 4915.Google Scholar
  91. 91.
    Vidadala, S. R.; Waldmann, H. Tetrahedron Lett. 2015, 56, 3358.Google Scholar
  92. 92.
    Cardoso, A. L.; Kaczor, A.; Silva, A. M. S.; Fausto, R.; Pinho e Melo, T. M. V. D.; Rocha Gonsalves, A. M. d’A. Tetrahedron 2006, 62, 9861.Google Scholar
  93. 93.
    Gao, D.; Zhai, H.; Parvez, M.; Back, T. G. J. Org. Chem. 2008, 73, 8057.Google Scholar
  94. 94.
    Pardasani, R. T.; Pardasani, P.; Chaturvedi, V.; Yadav, S. K.; Saxena, A.; Sharma, I. Heteroat. Chem. 2003, 14, 36.Google Scholar
  95. 95.
    Singh, S. N.; Regati, S.; Paul, A. K.; Layek, M.; Jayaprakash, S.; Reddy, K. V.; Deora, G. S.; Mukherjee, S.; Pal, M. Tetrahedron Lett. 2013, 54, 5448.Google Scholar
  96. 96.
    Yang, F.; Sun, J.; Gao, H.; Yan, C.-G. RSC Adv. 2015, 5, 32786.Google Scholar
  97. 97.
    Shirsat, P. K.; Khomane, N. B.; Mali, P. R.; Maddi, R. R.; Nanubolu, J. B.; Meshram, H. M. ChemistrySelect 2017, 2, 11218.Google Scholar
  98. 98.
    Yavari, I.; Baoosi, L.; Halvagar, M. R. Mol. Diversity 2017, 21, 257.Google Scholar
  99. 99.
    Galbraith, A.; Small, T.; Boekelheide, V. J. Org. Chem. 1959, 24, 582.Google Scholar
  100. 100.
    Tsuge, O.; Kanemasa, S.; Hamamoto, T. Chem. Lett. 1983, 12, 763.Google Scholar
  101. 101.
    Sutcliffe, O. B.; Storr, R. C.; Gilchrist, T. L.; Rafferty, P. Tetrahedron 2000, 56, 10011.Google Scholar
  102. 102.
    Huang, H.-M.; Li, Y.-J.; Ye, Q.; Yu, W.-B.; Han, L.; Jia, J.-H.; Gao, J.-R. J. Org. Chem. 2014, 79, 1084.Google Scholar
  103. 103.
    Sugimoto, K.; Yamomoto, N.; Tominaga, D.; Matsuya, Y. Org. Lett. 2015, 17, 1320.Google Scholar
  104. 104.
    Sugimoto, K.; Hoshiba, Y.; Tsuge, K.; Matsuya, Y. Synthesis 2016, 1855.Google Scholar
  105. 105.
    Bobeck, D. R.; Warner, D. L.; Vedejs, E. J. Org. Chem. 2007, 72, 8506.Google Scholar
  106. 106.
    Vedejs, E.; Naidu, B. N.; Klapars, A.; Warner, D. L.; Li, V.-s.; Na, Y.; Kohn, H. J. Am. Chem. Soc. 2003, 125, 15796.Google Scholar
  107. 107.
    Gribble, G. W. In The Chemistry of Heterocyclic Compounds: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. H., Eds.; John Wiley & Sons: Hoboken, 2002, Vol. 59, p. 681.Google Scholar
  108. 108.
    Gribble, G. W. In The Chemistry of Heterocyclic Compounds, Oxazoles: Synthesis, Reactions, and Spectroscopy, Part A; Taylor, E. C.; Wipf, P., Eds.; John Wiley & Sons: Hoboken, 2003, Vol. 60, p. 473.Google Scholar
  109. 109.
    Miao, Q.; Sun, H. Chin. J. Org. Chem. 2016, 36, 913.Google Scholar
  110. 110.
    Reissig, H.-U.; Zimmer, R. Angew. Chem., Int. Ed. 2014, 53, 9708.Google Scholar
  111. 111.
    Padwa, A.; Burgess, E. M.; Gingrich, H. L.; Roush, D. M. J. Org. Chem. 1982, 47, 786.Google Scholar
  112. 112.
    Coppola, B. P.; Noe, M. C.; Schwartz, D. J.; Abdon, R. L., II; Trost, B. M. Tetrahedron 1994, 50, 93.Google Scholar
  113. 113.
    Roesler, P.; Fleury, J.-P. Bull. Soc. Chim. Fr. 1968, 631.Google Scholar
  114. 114.
    Clerin, D.; Meyer, B.; Fleury, J. P.; Fritz, H. Tetrahedron 1976, 32, 1055.Google Scholar
  115. 115.
    St. Cyr, D. J.; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366.Google Scholar
  116. 116.
    Krenske, E. H.; Houk, K. N.; Arndtsen, B. A; St. Cyr, D. J. J. Am. Chem. Soc. 2008, 130, 10052.Google Scholar
  117. 117.
    St-Cyr, D. J.; Morin, M. S. T.; Bélanger-Gariépy, F.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N. J. Org. Chem. 2010, 75, 4261.Google Scholar
  118. 118.
    Morin, M. S. T.; St-Cyr, D. J.; Arndtsen, B. A. Org. Lett. 2010, 12, 4916.Google Scholar
  119. 119.
    Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468.Google Scholar
  120. 120.
    St. Cyr, D. J.; Martin, N.; Arndtsen, B. A. Org. Lett. 2007, 9, 449.Google Scholar
  121. 121.
    Morin, M. S. T.; St-Cyr, D. J.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N. J. Am. Chem. Soc. 2013, 135, 17349.Google Scholar
  122. 122.
    Shahvelayati, A. S.; Oladkazemi, M. Iran J. Org. Chem. 2013, 5, 1041.Google Scholar
  123. 123.
    Kayser, L. V.; Vollmer, M.; Welnhofer, M.; Krikcziokat, H.; Meerholz, K.; Arndtsen, B. A. J. Am. Chem. Soc. 2016, 138, 10516.Google Scholar
  124. 124.
    Tokuyama, H. J. Synth. Org. Chem., Jpn. 2015, 73, 1120.Google Scholar
  125. 125.
    Lopchuk, J. M.; Gribble, G. W. Tetrahedron Lett. 2015, 56, 3208.Google Scholar
  126. 126.
    Pandey, P. S.; Rao, T. S. Bioorg. Med. Chem. Lett. 2004, 14, 129.Google Scholar
  127. 127.
    Park, W. K. C.; Kennedy, R. M.; Larsen, S. D.; Miller, S.; Roth, B. D.; Song, Y.; Steinbaugh, B. A.; Sun, K.; Tait, B. D.; Kowala, M. C.; Trivedi, B. K.; Auerbach, B.; Askew, V.; Dillon, L.; Hanselman, J. C.; Lin, Z.; Lu, G. H.; Robertson, A.; Sekerke, C. Bioorg. Med. Chem. Lett. 2008, 18, 1151.Google Scholar
  128. 128.
    Sugimoto, K.; Miyakawa, Y.; Tokuyama, H. Tetrahedron 2015, 71, 3619.Google Scholar
  129. 129.
    Angle, S. R.; Qian, X. L.; Pletnev, A. A.; Chinn, J. J. Org. Chem. 2007, 72, 2015.Google Scholar
  130. 130.
    Erguven, H.; Leitch, D. C.; Keyzer, E. N.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2017, 56, 6078.Google Scholar
  131. 131.
    Song, G.; Chen, D.; Su, Y.; Han, K.; Pan, C.-L.; Jia, A.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7791.Google Scholar
  132. 132.
    Vivanco, S.; Lecea, B.; Arrieta, A.; Prieto, P.; Morao, I.; Linden, A.; Cossío, F. P. J. Am. Chem. Soc. 2000, 122, 6078.Google Scholar
  133. 133.
    Freindorf, M.; Sexton, T.; Kraka, E.; Cremer, D. Theor. Chem. Acc. 2014, 133, 1423.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna V. Gulevskaya
    • 1
    Email author
  • Julia I. Nelina-Nemtseva
    • 1
  1. 1.Faculty of Chemistry, Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations