Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 11, pp 1061–1064 | Cite as

Chemoselective aminomethylation of harmol

  • Svitlana P. Bondarenko
  • Vera N. Ishchenko
  • Mykhaylo S. Frasinyuk
Article
  • 14 Downloads

Aminomethylation of harmol (7-hydroxy-1-methyl-β-carboline) was investigated. It was shown that the reaction proceeds chemoselectively to form 8-aminomethyl derivatives by the action of aminals or a mixture of a secondary amine with paraform. When primary amines and an excess of paraform were used in the Mannich reaction, 2,3-dihydro-1H-pyrido[4',3':4,5]pyrrolo[3,2,1-ij]quinazolin-4-ol and 1,2,3,11-tetrahydro[1,3]oxazino[6,5-g]pyrido[3,4-b]indole derivatives are formed.

Keywords

β-carboline harmol Mannich bases 1H-pyrido[4',3':4,5]pyrrolo[3,2,1-ij]quinazoline aminomethylation 

Notes

Supplementary material

10593_2018_2392_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1231 kb)

References

  1. 1.
    Brierley, D. I.; Davidson, C. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 39, 263.CrossRefGoogle Scholar
  2. 2.
    Herraiz, T.; Gonzalez, D.; Ancin-Azpilicueta, C.; Aran, V. J.; Guillen, H. Food Chem. Toxicol. 2010, 48, 839.CrossRefGoogle Scholar
  3. 3.
    (a) Shi, B.; Cao, R.; Fan, W.; Guo, L.; Ma, Q.; Zhang, G.; Qiu, L.; Song, H. Eur. J. Med. Chem. 2013, 60, 10. (b) Zhang, G.; Cao, R.; Guo, L.; Ma, Q.; Fan, W.; Chen, X.; Li, J.; Shao, G.; Qiu, L.; Ren, Z. Eur. J. Med. Chem. 2013, 65, 21. (c) Cao, R.; Yi, W.; Wu, Q.; Guan, X.; Feng, M.; Ma, C.; Chen, Z.; Song, H.; Peng, W. Bioorg. Med. Chem. Lett. 2008, 18, 6558. (d) Meinguet, C.; Bruyère, C.; Frédérick, R.; Mathieu, V.; Vancraeynest, C.; Pochet, L.; Laloy, J.; Mortier, J.; Wolber, G.; Kiss, R.; Masereel, B.; Wouters, J. Eur. J. Med. Chem. 2015, 94, 45.Google Scholar
  4. 4.
    (a) Song, Y.; Kesuma, D.; Wang, J.; Deng, Y.; Duan, J.; Wang, J. H.; Qi, R. Z. Biochem. Biophys. Res. Commun. 2004, 317, 128. (b) Song, Y.; Wang, J.; Teng, S. F.; Kesuma, D.; Deng, Y.; Duan, J.; Wang, J. H.; Qi, R. Z.; Sim, M. M. Bioorg. Med. Chem. Lett. 2002, 12, 1129.Google Scholar
  5. 5.
    Reniers, J.; Robert, S.; Frederick, B.; Masereel, B.; Vincent, S.; Wouters, J. Bioorg. Med. Chem. 2011, 19, 134.CrossRefGoogle Scholar
  6. 6.
    Cuny, G. D.; Ulyanova, N. P.; Patnaik, D.; Liu, J.-F.; Lin, X.; Auerbach, K.; Ray, S. S.; Xian, J.; Glicksman, M. A.; Stein, R. L.; Higgins, J. M. G. Bioorg. Med. Chem. Lett. 2012, 22, 2015.CrossRefGoogle Scholar
  7. 7.
    (a) Li, Z.; Chen, S.; Zhu, S.; Luo, J.; Zhang, Y.; Weng, Q. Molecules 2015, 20, 13941. (b) Song, H.; Liu, Y.; Liu, Y.; Wang, L.; Wang, Q. J. Agric. Food Chem. 2014, 62, 1010.Google Scholar
  8. 8.
    Mahmoudian, M.; Jalilpour, H.; Dardashti, S. P. Iran. J. Pharmacol. Ther. 2002, 1, 1.Google Scholar
  9. 9.
    Sen'ko, O. A.; Dybenko, A. G.; Garazd, M. M.; Kartsev, V. G. Chem. Nat. Compd. 2017, 53, 523.CrossRefGoogle Scholar
  10. 10.
    Issa, S.; Walchshofer, N.; Kassab, I.; Gentili, J.; Geahchan, A.; Bouaziz, Z. Heterocycles 2008, 75, 2761.CrossRefGoogle Scholar
  11. 11.
    Del Giudice, M. R.; Gatta, F.; Settimj, G. J. Heterocycl. Chem. 1990, 27, 967.CrossRefGoogle Scholar
  12. 12.
    (a) Love, B. E. J. Org. Chem. 2007, 72, 630. (b) Akhmetova, V. R.; Bikbulatova, E. M.; Akhmadiev, N. S.; Galimzyanova, N. F.; Kunakova, R. V.; Ibragimov, A. G. Chem. Heterocycl. Compd. 2018, 54, 520. [Khim. Geterotsikl. Soedin. 2018, 54, 520.] (c) Werner, V.; Ellwart, M.; Wagner, A. J.; Knochel, P. Org. Lett. 2015, 17, 2026. c Feldman, J. R.; Wagner, E. C. J. Org. Chem. 1942, 7, 31. d Elderfield, R. C.; Wood, J. R. J. Org. Chem. 1962, 27, 2463. e Katritzky, A. R.; Rewcastle, G. W.; Vazquez de Miguel, L. M. J. Org. Chem. 1988, 53, 794.Google Scholar
  13. 13.
    (a) Bouaziz, Z.; Issa, S.; Gentili, J.; Gratz, A.; Bollacke, A.; Kassack, M.; Jose, J.; Herfindal, L.; Gausdal, G.; Doskeland, S. O.; Mulliе, C.; Sonnet, P.; Desgrouas, C.; Taudon, N.; Valdameri, G.; Di Pietro, A.; Baitiche, M.; Le Borgne, M. J. Enzyme Inhib. Med. Chem. 2015, 30, 180. (b) Issa, S.; Walchshofer, N.; Kassab, I.; Termoss, H.; Chamat, S.; Geahchan, A.; Bouaziz, Z. Eur. J. Med. Chem. 2010, 45, 2567.Google Scholar
  14. 14.
    (a) Reddy, P. N.; Padmaja, P.; Reddy, B. R.; Jadav, S. S. Med. Chem. Res. 2017, 26, 2243. (b) Padmaja, P.; Reddy, P. N.; Reddy, B. R. Lett. Org. Chem. 2018, 15, 653.Google Scholar
  15. 15.
    (a) Frasinyuk, M. S.; Bondarenko, S. P.; Khilya, V. P.; Liu, C.; Watt, D. S.; Sviripa, V. M. Org. Biomol. Chem. 2015, 13, 1053. (b) Popova, A. V.; Bondarenko, S. P.; Frasinyuk, M. S. Chem. Heterocycl. Compd. 2016, 52, 592. [Khim. Geterotsikl. Soedin. 2016, 52, 592.]Google Scholar
  16. 16.
    Salas-Coronado, R.; Gálvez-Ruiz, J. C.; Guadarrama-Pérez, C.; Flores-Parra, A. Heterocycles 2003, 60, 1123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Svitlana P. Bondarenko
    • 1
  • Vera N. Ishchenko
    • 1
  • Mykhaylo S. Frasinyuk
    • 2
  1. 1.National University of Food TechnologiesKyivUkraine
  2. 2.V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations