Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 11, pp 1045–1049 | Cite as

Nucleophilic substitution reactions of 1-methyl-4,5-dinitroimidazole with aqueous ammonia or sodium azide

  • Peng-Bao Lian
  • Xiao-Jie Guo
  • Jian-Long Wang
  • Li-Zhen Chen
  • Fan-Fan Shen
Article
  • 21 Downloads

In this work, 5-amino-1-methyl-4-nitroimidazole was synthesized by amination reaction of 1-methyl-4,5-dinitroimidazole with aqueous ammonia in 95% yield. Meanwhile, one of its isomers, 4-amino-1-methyl-5-nitroimidazole as byproduct was obtained from the filtrate. Furthermore, nucleophilic substitution reaction of 1-methyl-4,5-dinitroimidazole with sodium azide gave 5-azido-1-methyl-4-nitroimidazole in 98% yield. The three compounds were characterized by IR, 1H and 13C NMR spectra, melting points, and elemental analysis. The structure of 4-amino-1-methyl-5-nitroimidazole was further confirmed by single crystal X-ray diffraction. These reactions indicate that the nitro group at position 5 of 1-methyl-4,5-dinitroimidazole is quite unstable, as well as partial substitution of nitro group at position 4 also occured in aqueous ammonia. Only one nitro group of the two is involved in nucleophilic substitution reaction in each case.

Keywords

4-amino-1-methyl-5-nitroimidazole 5-amino-1-methyl-4-nitroimidazole 5-azido-1-methyl-4-nitroimidazole 1-methyl-4,5-dinitroimidazole nucleophilic substitution reaction 

Notes

We thank the Center of Testing and Analysis, Beijing University of Chemical Technology, for support.

Supplementary material

10593_2018_2389_MOESM1_ESM.pdf (307 kb)
ESM 1 (PDF 307 kb)

References

  1. 1.
    Breccia, A.; Cavalleri, B.; Adams, G. E. Nitroimidazoles: Chemistry, Pharmacology and Clinical Applications; Plenum Press: New York, 1982.CrossRefGoogle Scholar
  2. 2.
    Nair, M. D.; Nagarajan, K. Prog. Drug Res. 1983, 27, 163.Google Scholar
  3. 3.
    Crozet, M. D.; Remusat, V.; Curti, C.; Vanelle, P. Synth. Commun. 2006, 36, 3639.CrossRefGoogle Scholar
  4. 4.
    Larina, L.; Lopyrev, V. Nitroazoles: Synthesis, Structure and Application; Springer: New York, 2009.CrossRefGoogle Scholar
  5. 5.
    Bulusu, S.; Damavarapu, R.; Autera, J. R.; Behrens, R.; Minier, L. M.; Villanueva, J.; Jayasuriya, K.; Axenrod, T. J. Phys. Chem. 1995, 99, 5009.CrossRefGoogle Scholar
  6. 6.
    Rice, B. M.; Hare, J. J. J. Phys. Chem. A 2002, 106, 1770.CrossRefGoogle Scholar
  7. 7.
    Cho, S. G.; Park, B. S. J. Quantum Chem. 1999, 72, 145.CrossRefGoogle Scholar
  8. 8.
    Cho, J. R.; Kim, K. J.; Cho, S. G.; Kim, J. K. J. Heterocycl. Chem. 2002, 39, 141.CrossRefGoogle Scholar
  9. 9.
    Novikov, S. S.; Khmel'nitskii, L. I.; Lebedev, O. V.; Sevast'yanova, V. V.; Epishina, L.V. Chem. Heterocycl. Compd. 1970, 6, 465. [Khim. Geterotsikl. Soedin. 1970, 503.]Google Scholar
  10. 10.
    Novikov, S. S.; Khmel'nitskii, L. I.; Lebedev, O. V.; Epishina, L. V.; Sevost'yanova, V. V. Chem. Heterocycl. Compd. 1970, 6, 614. [Khim. Geterotsikl. Soedin. 1970, 664.]Google Scholar
  11. 11.
    Katritzky, A. R.; Cundy, D. J.; Chen, J. J. Energ. Mater. 1993, 11, 345.CrossRefGoogle Scholar
  12. 12.
    Gao, H. X.; Ye, C. F.; Gupta, O. D.; Xiao, J. C.; Hiskey, M. A.; Twamley, B.; Shreeve, J. M. Chem.–Eur. J. 2007, 13, 3853.CrossRefGoogle Scholar
  13. 13.
    Suwinski, J.; Salwinska, E.; Watras, J.; Widel, M. Polish J. Chem. 1982, 56, 1261.Google Scholar
  14. 14.
    Koehler, H.; Dockner, T. US Patent 4900825.Google Scholar
  15. 15.
    Zaprutko, L.; Żwawiak, J.; Olender, D.; Gzella, A. Heterocycles 2012, 85, 2197.CrossRefGoogle Scholar
  16. 16.
    Efimov, I.; Beliaev, N.; Beryozkina, T.; Slepukhin, P.; Bakulev, V. Tetrahedron Lett. 2016, 57, 1949.CrossRefGoogle Scholar
  17. 17.
    Balaban, I. E. J. Chem. Soc. 1930, 268.Google Scholar
  18. 18.
    MOpen image in new windowkosza, M.; Bialecki, M. J. Org. Chem. 1998, 63, 4878.Google Scholar
  19. 19.
    Vokin, A. I.; Shulunova, A. M.; Krivoruchka, I. G.; Krylova, O. V.; Lopyrev, V. A.; Turchaninov, V. K. Russ. J. Gen. Chem. 2002, 72, 449. [Zh. Obshch. Khim. 2002, 72, 483.]Google Scholar
  20. 20.
    Donskaya, O. V.; Elokhina, V. N.; Nakhmanovich, A. S.; Vakul'skaya, T. I.; Larina, L. I.; Vokin, A. I.; Albanov, A. I.; Lopyrev, V. A. Tetrahedron Lett. 2002, 43, 6613.CrossRefGoogle Scholar
  21. 21.
    Koehler, H.; Dockner, T. EP Patent 0337255; Chem. Abstr. 1990, 112, 235295v.Google Scholar
  22. 22.
    Shen, F. F.; Lian, P. B.; Chen, L. Z.; Wang, J. L.; Cao, D. L CN Patent 106995412.Google Scholar
  23. 23.
    Mukherjee, A.; Kumar, S.; Seth, M.; Bhadur, A. P. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1989, 28, 391.Google Scholar
  24. 24.
    Taher, A.; Eichenseher, S.; Slawin, A. M. Z.; Tennant, G.; Weaver, G. W. J. Chem. Soc., Perkin Trans. 1 2002, 1968.Google Scholar
  25. 25.
    Olender, D.; Żwawiak, J.; Zaprutko, L. J. Heterocycl. Chem. 2010, 47, 1049.CrossRefGoogle Scholar
  26. 26.
    Li, Y.-X.; Wang, X.-J.; Wang, J.-L. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, E65, o3073.CrossRefGoogle Scholar
  27. 27.
    Luo, J.; Liu, Y.-C.; Liu, Y.; Chai, T. Chem. Heterocycl. Compd. 2017, 53, 693. [Khim. Geterotsikl. Soedin. 2017, 53, 693.]Google Scholar
  28. 28.
    Cao, D. L.; Wang, X. J.; Yang, C. Y.; Song, L.; Han, H.; Zhou, J. F.; Chang, J. F. Chin. J. Energ. Mater. 2009, 17, 678.Google Scholar
  29. 29.
    Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.CrossRefGoogle Scholar
  30. 30.
    Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peng-Bao Lian
    • 1
  • Xiao-Jie Guo
    • 2
  • Jian-Long Wang
    • 1
  • Li-Zhen Chen
    • 1
  • Fan-Fan Shen
    • 1
  1. 1.School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanChina
  2. 2.Shanxi DaYi Hospital (Shanxi Academy of Medical Sciences)TaiyuanChina

Personalised recommendations